
Program design in the UNIX† environment

Rob Pike

Brian W. Kernighan

ABSTRACT

Much of the power of the UNIX operating system comes from a style of program
design that makes programs easy to use and, more important, easy to combine with other
programs. This style has been called the use of software tools, and depends more on how
the programs fit into the programming environment — how they can be used with other
programs — than on how they are designed internally. But as the system has become
commercially successful and has spread widely, this style has often been compromised, to
the detriment of all users. Old programs have become encrusted with dubious features.
Newer programs are not always written with attention to proper separation of function
and design for interconnection. This paper discusses the elements of program design,
showing by example good and bad design, and indicates some possible trends for the
future.

The UNIX operating system has become a great commercial success, and is likely to be the standard
operating system for microcomputers and some mainframes in the coming years.

There are good reasons for this popularity. One is portability: the operating system kernel and the
applications programs are written in the programming language C, and thus can be moved from one type of
computer to another with much less effort than would be involved in recreating them in the assembly lan-
guage of each machine. Essentially the same operating system therefore runs on a wide variety of comput-
ers, and users needn’t learn a new system when new hardware comes along. Perhaps more important, ven-
dors that sell the UNIX system needn’t provide new software for each new machine; instead, their software
can be compiled and run without change on any hardware, which makes the system commercially attrac-
tive. There is also an element of zealotry: users of the system tend to be enthusiastic and to expect it wher-
ever they go; the students who used the UNIX system in university a few years ago are now in the job mar-
ket and often demand it as a condition of employment.

But the UNIX system was popular long before it was even portable, let alone a commercial success.
The reasons for that are more interesting.

Except for the initial version, the UNIX system was written for the a machine that was (deservedly)
very popular. were powerful enough to do real computing, but small enough to be affordable by small
organizations such as academic departments in universities.

The early UNIX system was smaller but more effective and technically more interesting than compet-
ing systems on the same hardware. It provided a number of innovative applications of computer science,
showing the benefits to be obtained by a judicious blend of theory and practice. Examples include the
yacc parser-generator, the diff file comparison program, and the pervasive use of regular expressions to
describe string patterns. These led in turn to new programming languages and interesting software for
applications like program development, document preparation and circuit design.

Since the system was modest in size, and since essentially everything was written in C, the software
was easy to modify, to customize for particular applications or merely to support a view of the world

† UNIX is a trademark of Bell Laboratories.

- 2 -

different from the original. (This ease of change is also a weakness, of course, as evidenced by the plethora
of different versions of the system.)

Finally, the UNIX system provided a new style of computing, a new way of thinking of how to attack
a problem with a computer. This style was based on the use of using programs separately or in combina-
tion to get a job done, rather than doing it by hand, by monolithic self-sufficient subsystems, or by special-
purpose, one-time programs. This has been much discussed in the literature, so we don’t need to repeat it
here; see [1], for example.

The style of use and design of the tools on the system are closely related. The style is still evolving,
and is the subject of this essay: in particular, how the design and use of a program fit together, how the
tools fit into the environment, and how the style influences solutions to new problems. The focus of the
discussion is a single example, the program cat, which concatenates a set of files onto its standard output.
cat is a simple program, both in implementation and in use; it is essential to the UNIX system; and it is a
good illustration of the kinds of decisions that delight both supporters and critics of the system. (Often a
single property of the system will be taken as an asset or as a fault by different audiences; our audience is
programmers, because the UNIX environment is designed fundamentally for programming.) Even the
name cat is typical of UNIX program names: it is short, pronounceable, but not conventional English for
the job it does. (For an opposing viewpoint, see [2].) Most important, though, cat in its usages and varia-
tions exemplifies UNIX program design style and how it has been interpreted by different communities.

11/3/71 CAT (I)

NAME c _a _t _ -- concatenate and print

SYNOPSIS c _a _t _ f _i _l _e _1 _ ...

DESCRIPTION c _a _t _ reads each file in sequence and writes it on
the standard output stream. Thus:

c _a _t _ f _i _l _e _

is about the easiest way to print a file. Also:

c _a _t _ f _i _l _e _1 _ f _i _l _e _2 _ >f _i _l _e _3 _

is about the easiest way to concatenate files.

If no input file is given c _a _t _ reads from the
standard input file.

FILES --

SEE ALSO pr, cp

DIAGNOSTICS none; if a file cannot be found it is ignored.

BUGS --

OWNER ken, dmr

Figure 1: Manual page for cat, UNIX 1st Edition, November, 1971

Figure 1 is the manual page for cat from the UNIX 1st Edition manual. Evidently, cat copies its input to
its output. The input is normally taken from a sequence of one or more files, but it can come from the stan-
dard input. The output is the standard output. The manual suggests two uses, the general file copy:

- 3 -

cat file1 file2 >file3

and printing a file on the terminal:

cat file

The general case is certainly what was intended in the design of the program. Output redirection (provided
by the > operator, implemented by the UNIX shell) makes cat a fine general-purpose file concatenator and
a valuable adjunct for other programs, which can use cat to process filenames, as in:

cat file file2 ... | other-program

The fact that cat will also print on the terminal is a special case. Perhaps surprisingly, in practice it turns
out that the special case is the main use of the program.†

The design of cat is typical of most UNIX programs: it implements one simple but general function
that can be used in many different applications (including many not envisioned by the original author).
Other commands are used for other functions. For example, there are separate commands for file system
tasks like renaming files, deleting them or telling how big they are. Other systems instead lump these into a
single ‘‘file system’’ command with an internal structure and command language of its own. (The file copy
program found on operating systems like or is an example.) That approach is not necessarily worse or bet-
ter, but it is certainly against the UNIX philosophy. Unfortunately, such programs are not completely alien
to the UNIX system — some mail-reading programs and text editors, for example, are large self-contained
‘‘subsystems’’ that provide their own complete environments and mesh poorly with the rest of the system.
Most such subsystems, however, are usually imported from or inspired by programs on other operating sys-
tems with markedly different programming environments.

There are some significant advantages to the traditional UNIX system approach. The most important
is that the surrounding environment — the shell and the programs it can invoke — provides a uniform
access to system facilities. Filename argument patterns are expanded by the shell for all programs, without
prearrangement in each command. The same is true of input and output redirection. Pipes are a natural
outgrowth of redirection. Rather than decorate each command with options for all relevant pre- and post-
processing, each program expects as input, and produces as output, concise and header-free textual data that
connects well with other programs to do the rest of the task at hand. It takes some programming discipline
to build a program that works well in this environment — primarily, to avoid the temptation to add features
that conflict with or duplicate services provided by other commands — but it’s well worthwhile.

Growth is easy when the functions are well separated. For example, the 7th Edition shell was aug-
mented with a backquote operator that converts the output of one program into the arguments to another, as
in

cat ‘cat filelist‘

No changes were made in any other program when this operator was invented; because the backquote is
interpreted by the shell, all programs called by the shell acquire the feature transparently and uniformly. If
special characters like backquotes were instead interpreted, even by calling a standard subroutine, by each
program that found the feature appropriate, every program would require (at least) recompilation whenever
someone had a new idea. Not only would uniformity be hard to enforce, but experimentation would be
harder because of the effort of installing any changes.

The UNIX 7th Edition system introduced two changes in cat. First, files that could not be read,
either because of denied permissions or simple non-existence, were reported rather than ignored. Second,
and less desirable, was the addition of a single optional argument -u, which forced cat to unbuffer its out-
put (the reasons for this option, which has disappeared again in the 8th Edition of the system, are technical
and irrelevant here.)

But the existence of one argument was enough to suggest more, and other versions of the system

† The use of cat to feed a single input file to a program has to some degree superseded the shell’s < operator, which illus-
trates that general-purpose constructs — like cat and pipes — are often more natural than convenient special-purpose
ones.

- 4 -

soon embellished cat with features. This list comes from cat on the Berkeley distribution of the UNIX
system:

-s strip multiple blank lines to a single instance
-n number the output lines
-b number only the non-blank lines
-v make non-printing characters visible

-ve mark ends of lines
-vt change representation of tab

In System V, there are similar options and even a clash of naming: -s instructs cat to be silent
about non-existent files. But none of these options are appropriate additions to cat; the reasons get to the
heart of how UNIX programs are designed and why they work well together.

It’s easy to dispose of (Berkeley) -s, -n and -b: all of these jobs are readily done with existing tools
like sed and awk. For example, to number lines, this awk invocation suffices:

awk ’{ print NR "\t" $0 }’ filenames

If line-numbering is needed often, this command can be packaged under a name like linenumber and put
in a convenient public place. Another possibility is to modify the pr command, whose job is to format text
such as program source for output on a line printer. Numbering lines is an appropriate feature in pr; in fact
UNIX System V pr has a -n option to do so. There never was a need to modify cat; these options are
gratuitous tinkering.

But what about -v? That prints non-printing characters in a visible representation. Making strange
characters visible is a genuinely new function, for which no existing program is suitable. (‘‘sed -n l’’,
the closest standard possibility, aborts when given very long input lines, which are more likely to occur in
files containing non-printing characters.) So isn’t it appropriate to add the -v option to cat to make
strange characters visible when a file is printed?

The answer is ‘‘No.’’ Such a modification confuses what cat’s job is — concatenating files — with
what it happens to do in a common special case — showing a file on the terminal. A UNIX program
should do one thing well, and leave unrelated tasks to other programs. cat’s job is to the data in files.
Programs that collect data shouldn’t the data; cat therefore shouldn’t transform its input.

The preferred approach in this case is a separate program that deals with non-printable characters.
We called ours vis (a suggestive, pronounceable, non-English name) because its job is to make things vis-
ible. As usual, the default is to do what most users will want — make strange characters visible — and as
necessary include options for variations on that theme. By making vis a separate program, related useful
functions are easy to provide. For example, the option -s strips out (i.e., discards) strange characters,
which is handy for dealing with files from other operating systems. Other options control the treatment and
format of characters like tabs and backspaces that may or may not be considered strange in different situa-
tions. Such options make sense in vis because its focus is entirely on the treatment of such characters. In
cat, they require an entire sub-language within the -v option, and thus get even further away from the
fundamental purpose of that program. Also, providing the function in a separate program makes conve-
nient options such as -s easier to invent, because it isolates the problem as well as the solution.

One possible objection to separate programs for each task is efficiency. For example, if we want
numbered lines and visible characters it is probably more efficient to run the one command

cat -n -v file

than the two-element pipeline

linenumber file | vis

In practice, however, cat is usually used with no options, so it makes sense to have the common cases be
the efficient ones. The current research version of the cat command is actually about five times faster
than the Berkeley and System V versions because it can process data in large blocks instead of the byte-at-
time processing that might be required if an option is enabled. Also, and this is perhaps more important, it
is hard to imagine any of these examples being the bottleneck of a production program. Most of the real

- 5 -

time is probably taken waiting for the user’s terminal to display the characters, or even for the user to read
them.

Separate programs are not always better than wider options; which is better depends on the problem.
Whenever one needs a way to perform a new function, one faces the choice of whether to add a new option
or write a new program (assuming that none of the programmable tools will do the job conveniently). The
guiding principle for making the choice should be that each program does one thing. Options are appropri-
ately added to a program that already has the right functionality. If there is no such program, then a new
program is called for. In that case, the usual criteria for program design should be used: the program should
be as general as possible, its default behavior should match the most common usage, and it should cooper-
ate with other programs.

Let’s look at these issues in the context of another problem, dealing with fast terminal lines. The first
versions of the UNIX system were written in the days when 150 baud was ‘‘fast,’’ and all terminals used
paper. Today, 9600 baud is typical, and hard-copy terminals are rare. How should we deal with the fact
that output from programs like cat scrolls off the top of the screen faster than one can read it?

There are two obvious approaches. One is to tell each program about the properties of terminals, so it
does the right thing (whether by option or automatically). The other is to write a command that handles ter-
minals, and leave most programs untouched.

An example of the first approach is Berkeley’s version of the ls command, which lists the filenames
in a directory. Let us call it lsc to avoid confusion. The 7th Edition ls command lists filenames in a sin-
gle column, so for a large directory, the list of filenames disappears off the top of the screen at great speed.
lsc prints in columns across the screen (which is assumed to be 80 columns wide), so there are typically
four to eight times as many names on each line, and thus the output usually fits on one screen. The option
-1 can be used to get the old single-column behavior.

Surprisingly, lsc operates differently if its output is a file or pipe:

lsc

produces output different from

lsc | cat

The reason is that lsc begins by examining whether or not its output is a terminal, and prints in columns
only if it is. By retaining single-column output to files or pipes, lsc ensures compatibility with programs
like grep or wc that expect things to be printed one per line. This adjustment of the output format depend-
ing on the destination is not only distasteful, it is unique — no standard UNIX command has this property.

A more insidious problem with lsc is that the columnation facility, which is actually a useful, gen-
eral function, is built in and thus inaccessible to other programs that could use a similar compression. Pro-
grams should not attempt special solutions to general problems. The automatic columnation in lsc is rem-
iniscent of the ‘‘wild cards’’ found in some systems that provide filename pattern matching only for a par-
ticular program. The experience with centralized processing of wild cards in the UNIX shell shows over-
whelmingly how important it is to centralize the function where it can be used by all programs.

One solution for the ls problem is obvious — a separate program for columnation, so that columna-
tion into say 5 columns is just

ls | 5

It is easy to build a first-draft version with the multi-column option of pr. The commands 2, 3, etc., are all
links to a single file:

pr -$0 -t -l1 $*

$0 is the program name (2, 3, etc.), so -$0 becomes -n where is the number of columns that pr is to pro-
duce. The other options suppress the normal heading, set the page length to 1 line, and pass the arguments
on to pr. This implementation is typical of the use of tools — it takes only a moment to write, and it
serves perfectly well for most applications. If a more general service is desired, such as automatically
selecting the number of columns for optimal compaction, a C program is probably required, but the one-
line implementation above satisfies the immediate need and provides a base for experimentation with the

- 6 -

design of a fancier program, should one become necessary.

Similar reasoning suggests a solution for the general problem of data flowing off screens (colum-
nated or not): a separate program to take any input and print it a screen at a time. Such programs are by
now widely available, under names like pg and more. This solution affects no other programs, but can be
used with all of them. As usual, once the basic feature is right, the program can be enhanced with options
for specifying screen size, backing up, searching for patterns, and anything else that proves useful within
that basic job.

There is still a problem, of course. If the user forgets to pipe output into pg, the output that goes off
the top of the screen is gone. It would be desirable if the facilities of pg were always present without hav-
ing to be requested explicitly.

There are related useful functions that are typically only available as part of a particular program, not
in a central service. One example is the history mechanism provided by some versions of the UNIX shell:
commands are remembered, so it’s possible to review and repeat them, perhaps with editing. But why
should this facility be restricted to the shell? (It’s not even general enough to pass input to programs called
the shell; it applies to shell commands only.) Certainly other programs could profit as well; any interactive
program could benefit from the ability to re-execute commands. More subtly, why should the facility be
restricted to program Pipes have shown that the output from one program is often useful as input to another.
With a little editing, the output of commands such as ls or make can be turned into commands or data for
other programs.

Another facility that could be usefully centralized is typified by the editor escape in some mail com-
mands. It is possible to pick up part of a mail message, edit it, and then include it in a reply. But this is all
done by special facilities within the mail command and so its use is restricted.

Each such service is provided by a different program, which usually has its own syntax and seman-
tics. This is in contrast to features such as pagination, which is always the same because it is only done by
one program. The editing of input and output text is more environmental than functional; it is more like the
shell’s expansion of filename metacharacters than automatic numbering of lines of text. But since the shell
does not see the characters sent as input to the programs, it cannot provide such editing. The emacs edi-
tor3 provides a limited form of this capability, by processing all UNIX command input and output, but this
is expensive, clumsy, and subjects the users to the complexities and vagaries of yet another massive subsys-
tem (which isn’t to criticize the inventiveness of the idea).

A potentially simpler solution is to let the terminal or terminal interface do the work, with controlled
scrolling, editing and retransmission of visible text, and review of what has gone before. We have used the
programmability of the Blit terminal4 — a programmable bitmap graphics display — to capitalize on this
possibility, to good effect.

The Blit uses a mouse to point to characters on the display, which can be edited, rearranged and
transmitted back to the UNIX system as though they had been typed on the keyboard. Because the terminal
is essentially simulating typed input, the programs are oblivious to how the text was created; all the features
discussed above are provided by the general editing capabilities of the terminal, with no changes to the
UNIX programs.

There are some obvious direct advantages to the Blit’s ability to process text under the user’s control.
Shell history is trivial: commands can be selected with the mouse, edited if desired, and retransmitted.
Since from the terminal’s viewpoint all text on the display is equivalent, history is limited neither to the
shell nor to command input. Because the Blit provides editing, most of the interactive features of programs
like mail are unnecessary; they are done easily, transparently and uniformly by the terminal.

The most interesting facet of this work, however, is the way it removes the need for interactive fea-
tures in programs; instead, the Blit is the place where interaction is provided, much as the shell is the pro-
gram that interprets filename-matching metacharacters. Unfortunately, of course, programming the termi-
nal demands access to a part of the environment off-limits to most programmers, but the solution meshes
well with the environment and is appealing in its simplicity. If the terminal cannot be modified to provide
the capabilities, a user-level program or perhaps the UNIX kernel itself could be modified fairly easily to do
roughly what the Blit does, with similar results.

- 7 -

The key to problem-solving on the UNIX system is to identify the right primitive operations and to
put them at the right place. UNIX programs tend to solve general problems rather than special cases. In a
very loose sense, the programs are orthogonal, spanning the space of jobs to be done (although with a fair
amount of overlap for reasons of history, convenience or efficiency). Functions are placed where they will
do the most good: there shouldn’t be a pager in every program that produces output any more than there
should be filename pattern matching in every program that uses filenames.

One thing that UNIX does not need is more features. It is successful in part because it has a small
number of good ideas that work well together. Merely adding features does not make it easier for users to
do things — it just makes the manual thicker. The right solution in the right place is always more effective
than haphazard hacking.

1. B. W. Kernighan and Rob Pike, The UNIX Programming Environment, Prentice-Hall (1984).

2. D. Norman, ‘‘The Truth about UNIX,’’ Datamation (November, 1981).

3. James Gosling, ‘‘UNIX Emacs,’’ CMU internal memorandum (August, 1982).

4. R. Pike, ‘‘The Blit: A Multiplexed Graphics Terminal,’’ Bell System Technical Journal (this issue,
1984).

