
masqmail
a mail transfer agent

for workstations and

small networks

Diploma Thesis

by Markus Schnalke

Matriculation: #039131

Business Information Systems

University of Applied Sciences Ulm
Prof. Dr. Markus Schäffter, Advisor

This thesis was handed in on February 9, 2009

Abstract

masqmail is a mail transfer agent for workstations and small networks, and a
small replacement for sendmail, postfix, and exim in those cases. It has been

orphaned by its author more than five years ago. Since then it remained

unchanged in a world where emailing did change. Nevertheless, masqmail has
unique advantages that makes it still a valuable software.

This diploma thesis is a scientific planning effort to revive masqmail. It pro-
vides a highly structured analysis of masqmail and its environment. Modern

requirements for masqmail are compared against the current state of the pro-
gram to receive a list of pending work tasks. Further development strategies

are carefully compared and discussed. Finally concrete plans and recommen-

dations are defined, with the goal of turning masqmail into a modern mail
transfer agent again.

Keywords

future of communication, mail transfer agent (MTA), market analysis, masq-
mail, MTA architecture, non-permanent Internet connection, requirements for

modern MTAs, software redesign, unified messaging.

Copyright
© 2008, 2009 by Markus S
hnalke.This do
ument was typeset in Palatino and Computer Modern font, using the LaTeX do
ument preparationsystem on ma
hines running the Debian GNU/Linux operating system. Text editing was done with Vim.The PIC language and tro� were used to generate the diagrams, in ex
eption of �gure 4.3 whi
h wasprodu
ed with Egypt and GraphVis. Mer
urial was
hosen for version
ontrol. Further programs and s
riptswere used for minor tasks�it was all Free Software, though.The �nal version of this thesis, in Portable Do
ument Format and PostS
ript as well as the
omplete sour
e
ode,
an be retrieved from my website: http://marmaro.de/do
s .Permission is hereby granted to
opy and distribute this do
ument in verbatim form.

Confirmation

Herewith I affirm that I wrote this document on my own and that I have used

only the indicated references, resources, and aids.

In German:

Hiermit bestätige ich, dass ich die vorliegende Arbeit selbstständig verfasst,

und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet
habe.

Breitingen, 2009-02-09 Markus Schnalke

Do what you think is interesting,

do something that you think is fun and worthwhile,
because otherwise you won’t do it well anyway.

—Brian W. Kernighan—

Contents

Preface . vi

1 Introduction 1

1.1 Email prerequisites . 1

1.2 The masqmail project . 4

1.2.1 Target field . 4

1.2.2 Features . 7

1.3 Why masqmail is worth it . 9

1.4 Problems to solve . 11

1.5 Delimitation . 11

2 Market analysis 12

2.1 Electronic communication technologies 12

2.1.1 Classification . 13

2.1.2 Life cycle analysis . 14

2.1.3 Trends . 15

2.2 Electronic mail . 17

2.2.1 SWOT analysis . 18

2.2.2 Trends for electronic mail 20

2.2.3 Important properties in future 22

2.3 Summary . 24

3 Mail transfer agents 26

3.1 Types of MTAs . 26

3.2 Popular MTAs . 28

3.2.1 Market share analysis . 29

3.2.2 The four major Free Software MTAs 30

3.3 Comparison of MTAs . 32

3.4 Summary . 34

iv

CONTENTS v

4 masqmail’s present and future 36

4.1 The goal . 36

4.2 Requirements . 37

4.2.1 Functional requirements 37

4.2.2 Non-functional requirements 42

4.2.3 Architecture . 45

4.3 Fulfilled requirements . 46

4.4 Work to do . 50

4.5 Ways for further development . 52

4.5.1 Possibilities . 52

4.5.2 Discussion . 54

4.6 Result . 59

5 Improvement plans 61

5.1 Based on current code . 61

5.1.1 Encryption . 61

5.1.2 Authentication . 62

5.1.3 Security . 64

5.2 A new design . 65

5.2.1 Design decisions . 66

5.2.2 The resulting architecture 71

6 Summary 77

Bibliography a

Index j

Preface

This thesis is about masqmail, a small mail transfer agent for workstations

and home networks. In October 2007 I had chosen masqmail for my machines
because of its small size though it was a “real” mail transfer agent. masqmail

served me well since then and I have found no reasons to change.

Unfortunately, the masqmail package in Debian, which is my preferred GNU/Li-

nux distribution, is unmaintained since the beginning of 2008. Unmaintained

packages are likely to get dropped out of a distribution if critical bugs ap-
pear in them. Although masqmail had no critical bugs, this was a situation I

definitely wanted to prevent.

Using my diploma thesis as a “power-start” for maintaining and developing

masqmail in the future was a great idea. As it came to my mind I knew this is
the thing I wanted to do. — I did it! :-)

The overall goal of this document is to revive masqmail in usage and develop-

ment. masqmail was not developed further in the last five years although the
world of email has changed during this time. Hence quite some work needed

to be done.

I decided to start at the basis and analyze the environment and masqmail

throughout to end up in concrete plans of what should be done and how

it should be done to turn masqmail into a modern mail transfer agent again.

The actual implementation of the proposed changes will follow-up this thesis.
Here solutions are identified, described, discussed, and recommended but not

implemented. I have been working in the code and have fixed bugs during

the time I worked on the thesis, though.

This document is primary written with an audience of masqmail developers

and developers of other mail transfer agents in mind. But users of masqmail

and everyone who is interested in email systems in general may find this
thesis an interesting literature, too.

However, at least basic knowledge about Unix and C programming is a pre-
requisite for chapters three, four, and five. Kernighan and Pike’s “The UNIX

Programming Environment” [KP84] is a valuable source to gain information
about Unix. Programming in the C language is best learned from Kernighan

and Ritchie’s “The C Programming Language” [KR88].

vi

CONTENTS vii

Organization

The document consists of six chapters, each covering a delimited part of the
overall topic and building upon the content and results of previous chapters.

The first three chapters lead into the topic and create a solid base where the
second part builds upon. The chapters four and five form the central part of

the thesis as they focus on masqmail.

Chapter 1 introduces masqmail to the reader. It presents the properties, goals,

advantages, and problems of the program. Basic concepts of the email tech-

nology are also described and later assumed to be known.

Chapter 2 analyzes the market of electronic communication and email. This

chapter gives sound reasons for the sense of future development of masqmail
by showing that email will remain an important technology in the future. It

tries to identify future trends, too.

Chapter 3 deals with mail transfer agents (MTAs) which are the most impor-

tant entities of the email transport structure. MTAs are defined, classified, and
the most important ones are presented and compared.

Chapter 4 focuses on masqmail’s present and future. It is the core of the
thesis. Requirements are identified and lead to a list of pending work tasks.

Then possible strategies for future development are discussed.

Chapter 5 describes improvement plans which are based on decisions in

chapter four, in more detail. A proposed architecture for a redesigned masq-
mail is presented, too.

Chapter 6 summarizes the most important results and closes the thesis.

Conventions

The following typographic conventions are used in this thesis:

1. Italic shape is used to emphasize text, to introduce new terms, and for

names, including product, host, and user names, as well as email ad-
dresses.

2. For names of persons Small Caps are used.

3. File and path names, contents of files, and output from programs are

displayed in Typewriter font.

References to external resources are marked using one of three styles, distin-

guished by the type of resource.

1. References to books, articles, and documents of similar kind, look like

this: [KP84]. The letters represent the author(s) (here Kernighan and
Pike), while the number represents the year of publication (here 1984).

CONTENTS viii

2. Websites are different from documents as they are less some text written

by some author but more a place where information is gathered. Website

may also change from time to time, thus the date of access is given to
indicate the version to which was referred. References to websites have

such appearance: [24].

3. Request for Comments are those documents that define the Internet. They
are referenced directly by their unique number. For instance: RFC 821.

The Bibliography is located at the end of the thesis. It also includes a list of
the relevant RFCs and how they can be retrieved.

Acknowledgments

First, I want to thank Oliver Kurth for writing masqmail; I build upon his

work. My second thanks goes to professor Markus Schäffter, my advisor.
He was the one who made this thesis possible by putting faith in me and this

topic. I very much enjoyed the time with him.

I thank Christian Langbein and professor Volkmar Kese for teaching me

important lessons about structure. You are so right, it is all about: structure,

structure, structure.

My Dad and my friend Julian Forster took time for me so I could explain

various parts of the thesis to them; this was important, thanks. James Stenard

was of great help in questions about the English language, thanks. Roger

Schietzel double-checked all web addresses and ISBNs for validity, thanks for
covering this bulky task.

Henry Atting, Joachim Breitner, Marc Geis, Jochen Roth, and Hans-
Jörg Schaaf (in alphabetical order) had a look at my thesis and returned

comments and suggestions—each one was valuable. Thank you all.

Not to forget is everyone who discussed with me on mailing lists and in pri-

vate communication, and my family for backing me.

There is also an institution that needs to be praised: The Württembergische

Landesbibliothek in Stuttgart; it was the most productive place to work and the
most impressive one, too.

But the most support I did receive from Lydi. I am deeply grateful for your

patience and sacrifice during the last months; for your motivation and encour-
agement; and for the ease I found in your arms. Thank you!

markus schnalke

Chapter 1

Introduction

This chapter introduces some basic email concepts that are essential for un-
derstanding the remainder of the thesis. Then masqmail—the program of

interest—is presented. History, typical usage, and the function it provides

are described. After an explanation of masqmail’s relevance, its weaknesses are
pointed out. Solving these weaknesses is the topics that is covered throughout

this thesis.

1.1 Email prerequisites

Electronic mail is a service on the Internet and thus, like other Internet ser-
vices, defined and standardized by Requests For Comments (short: RFCs) under

management of the Internet Engineering Task Force (short: IETF). RFCs are highly

technical documents and it is not required that the readers of this thesis are
familiar with them.

This section gives an introduction into the basic internals of the email system
in a low-technical language. It is intended to make the reader familiar with

the essential concepts of email as they are essential throughout the thesis.

Mail agents

This thesis will frequently use the three terms: MTA, MUA, and MDA, naming

the three different kinds of nodes of the email infrastructure. Here, they are

explained with references to the “snail mail” system which is known from
everyday life. Figure 1.1 shows the relation between those three mail agents

and the way an email message takes when passing through the system.

MTA: Mail Transfer Agents are the post offices for electronic mail. The basic

job of an MTA is to transport mail from senders to recipients, or more
pedantic: from MTA to MTA. sendmail, exim, qmail, postfix, and, of course,

masqmail are MTAs. MTAs are explained in more detail in chapter 3.

1

CHAPTER 1. INTRODUCTION 2

MTA MTA . . . MTA

MDA mailbox

MUA

recipient

MUA

sender

Figure 1.1: Mail agents and the way a mail message takes

MUA: Mail User Agents are the software users deal with. A user writes and

reads email with it. The MUA passes outgoing mail to the nearest MTA.
Also the MUA displays the contents of the user’s mailbox. Well known

MUAs are Mozilla Thunderbird and mutt on Unix systems, and Microsoft

Outlook on Windows.

MDA: Mail Delivery Agents correspond to postmen in the real world. They
receive mail, destined to recipients they are responsible for, from an

MTA, and deliver it to the mailboxes of those recipients. Many MTAs

include an own MDA, but independent ones exist: procmail and maildrop
are examples.

Mail transfer with SMTP

Today most of the email is transferred using the Simple Mail Transfer Protocol
(short: SMTP), which is defined in RFC 821 and the successors RFC 2821 and

RFC 5321. A good entry point for further information is [38].

A selection of important concepts of SMTP is explained here.

First the store-and-forward transfer concept. This means mail messages are sent
from MTA to MTA, until the final MTA (the one which is responsible for the

recipient) is reached. The message is stored for some time on each MTA, until

it is forwarded to the next MTA.

This leads to the concept of responsibility. A mail message is always in the

responsibility of one system. First it is the MUA. When it is transferred to an
MTA, this MTA takes over the responsibility for the message, too. The MUA can

then delete its copy of the message. This is the same for each transfer—from
MTA to MTA and finally from MTA to the MDA—the message gets transferred

and if the transfer was successful, the responsibility for the message is trans-

ferred as well. The responsibility chain ends at a user’s mailbox where he
himself has control on the message.

CHAPTER 1. INTRODUCTION 3

A third concept is about failure handling. At any step on the way an MTA may

receive a message it is unable to handle. In such a case this receiving MTA

will reject the message before it takes responsibility for it. The sending MTA

still has responsibility for the message and may try other ways for sending the

message. If none succeeds the MTA will send a bounce message back to the orig-
inal sender with information on the type of failure. Bounces are only sent if

the failure is expected to be permanent or if the transfer still was unsuccessful

after many tries.

Mail messages

Mail messages consist of text in a specific format. This format is specified in

RFC 822, and the successors RFC 2822 and RFC 5322.

A message has two parts, the header and the body. The header of an email
message is similar to the header of a (formal) letter. It spans the first lines of

the message up to the first empty line. The header consists of several lines,
called header lines or simply headers. They specify the sender, the recipient(s),

the date, and possibly further information. Their order is irrelevant. Head-

ers are named like the colon-separated start of those lines, for example the
“Date:” header. A user may write the header himself but normally the MUA

does this job.

The body is the payload of the message. It is under full control of the user.
From the view point of the SMTP protocol, it must consist of only 7-bit ASCII

text. But arbitrary content can be included by encoding it to 7-bit ASCII. MIME

is the common SMTP extension to handle such conversion automatically in
MUAs.

Following is a sample mail message with four header lines (From:, To:, Date:,

and Subje
t:) and three lines of message body.From: markus�host01To: ali
e�host02, bob�host03Date: Sun, 11 Jan 2009 18:20:01 +0100Subje
t: A sample mail messageThis is the
ontent of the message.Further empty lines
an be in
luded.
Email messages are put into envelopes for transfer. This concept is also derived
from the real world so it is easy to understand. The envelope is used to

route the message from sender to recipient. It contains the sender’s address
and addresses of one or more recipients. Envelopes are generated by MTAs,

usually from mail header data. The user has not to deal with them.

Each MTA on the way reads envelopes it receives and generates new ones. If
a message has recipients on different hosts, then the message gets copied and

sent within multiple envelopes, one for each host.

The sample message would lead to two envelopes, one from markus@host01

to alice@host02, the other from markus@host01 to bob@host03. Both envelopes

would contain the same message.

CHAPTER 1. INTRODUCTION 4

1.2 The masqmail project

The masqmail project was initiated by Oliver Kurth in 1999. His aim was to

create a small MTA that is especially focused on computers with dial-up In-
ternet connections. Throughout the next four years he worked steadily on it,

releasing new versions every few weeks. During the active phase of develop-
ment 53 version have been released. In average, this is a new version every 20

days.

This thesis is based on the latest release of masqmail—version 0.2.21, dated

November 2005. It was released after a 28 month gap of inactivity. The source

code of 0.2.21 is the same as of 0.2.20, with only build documents modified.
The homepage of masqmail [10] does not include this latest release, but it can

be retrieved from the Debian package pool1 [19].

masqmail is covered by the General Public License (short: GPL) version two or

any later version [FSF91]. This qualifies masqmail as Free Software [FSF08].

Kurth abandoned masqmail after 2005 and no one adopted the project since

then. Thus, the author of this thesis decided to take over responsibility for
masqmail now. He received Kurth’s permission to do so in private telephone

conversation with Kurth on September 4, 2008.

The program’s new homepage [24] includes a collection of available informa-

tion about this MTA.

1.2.1 Target field

Kurth’s intention when creating masqmail is best told in his own words:

MasqMail is a mail server designed for hosts that do not have a permanent

internet connection eg. a home network or a single host at home. It has

special support for connections to different ISPs. It replaces sendmail or

other MTAs such as qmail or exim. [10]

It is intended to cover a specific niche: non-permanent Internet connection
and different Internet Service Providers (short: ISPs).

Although it can basically replace other MTAs it is not generally aimed to do so.
The package description of masqmail within Debian states this more clearly by

changing the last sentence to:

In these cases, MasqMail is a slim replacement for full-blown MTAs such

as sendmail, exim, qmail or postfix. [20]

1The URL is:http://ftp.de.debian.org/debian/pool/main/m/masqmail/masqmail_0.2.21.orig.tar.gz

CHAPTER 1. INTRODUCTION 5

ISP

routerInternet
Local network

workstation
(masqmail)

workstation
(masqmail)

workstation
(masqmail)

Scenario 1

ISP

routerInternet
Local network

server
(masqmail)

workstation
(forwarder)

workstation
(forwarder)

workstation
(forwarder)

Scenario 2

Figure 1.2: Typical usage scenarios for masqmail

The program is a good replacement “in these cases” but not generally, since
it lacks essential features for running on openly accessible mail servers. It is

primarily not secure enough for being accessible from untrusted locations.

masqmail is best used in home networks which are non-permanently connected

to the Internet. It is easy configurable for situations which are rarely solvable

with the common MTAs. Such include different handling of mail to local or
remote destination and respecting different routes of online connection. These

features are explained in more detail in section 1.2.2.

While many other MTAs are general purpose MTAs, masqmail aims on special

situations. Nevertheless, it can be used as general purpose MTA, too. Espe-
cially this was a design goal of masqmail: To be a replacement for sendmail or

similar MTAs.

masqmail is designed to run on workstations and on servers in small networks,

like they are common in SOHOs (Small Offices/Home Offices).

Typical usage scenarios

This section describes three common setups that make sensible use of masq-
mail. The first two are shown in figure 1.2.

Imagine an Internet-connected home network consisting of some worksta-

tions.

Scenario 1: If no server is present, every workstation would be equipped

with masqmail. Mail transfer within the same machine or within the

local net works straight forward using direct transfer. Outgoing mail to
the Internet is sent to an Internet Service Provider (short: ISP) for relaying

whenever the router goes online. The configuration of masqmail would

be the same on every computer; only host names would differ. To receive
mail from the Internet requires a mailbox on the ISP’s mail server. Mail

CHAPTER 1. INTRODUCTION 6

needs to be fetched from the ISP’s server onto the workstation using the

POP3 or IMAP protocol.

Scenario 2: In the same network but with a server, one could have masqmail

running on the server and using simple forwarders (see section 3.1) on
the workstations to transfer mail to the server. The server would then,

dependent on the destination of the message, deliver locally or relay
to an ISP’s server for further relay. This setup does only support mail

transfer to the server but not back to a workstation. However, this can

be solved by mounting the user’s mailbox from the server to the work-
station or by using POP3 or IMAP. Mail transfer from the ISP to the local

server needs POP3 or IMAP as well.

Scenario 3: A third scenario is unrelated as it is about notebooks. Notebooks
are usually used as mobile workstations. One uses them to work at

different locations. With the increasing popularity of wireless networks

this becomes more and more common. Different networks demand for
different setups: In one network it is best to send mail to an ISP for relay.

In another network it might be preferred to use a local mail server. A

third network may have no Internet access at all, hence using a local
mail server is required. All these different setups can be configured

once and then used by simply telling the online state to masqmail, even
automatically within a network setup script.

In general, all kinds of usage scenarios within a trusted network are possible.
Important to notice is that mail can not be sent from outside into the trusted

network then. For using masqmail on notebooks it is suggested to only accept

mail from local users because notebooks are often in untrusted environments.

Limitations

Although masqmail is seen as a replacement for other general purpose MTAs, it
should not be used on large mail servers. The reasons are that it implements

only a basic subset of features and that its performance and security is not as

good as needed for such usage.

The author, Kurth, warns on the old project’s website about using masqmail

to accept connections from the Internet because of the risk of being an open
relay:

MasqMail is not designed to run on a host with a permanent internet

connection. It does not have the ability to check for spam mail and it will

relay everything from everywhere to everywhere. Use another mail server

such as exim for permanent connections. [10]

The actual problem is not the permanent Internet connection but listening
for incoming mail on it. If a firewall is closed for incoming mail, then the

CHAPTER 1. INTRODUCTION 7

permanent Internet connection is no problem. To use masqmail for permanent

Internet connections it needs to be secured with care.

The Internet is the common example for an untrusted network but other net-

works may be untrusted, too.

1.2.2 Features

This thesis regards version 0.2.21 of masqmail. This is the last version released

by Oliver Kurth.

The source code

masqmail is written in the C programming language. The program, as of ver-

sion 0.2.21, consists of 34 source code and eight header files which contain
about 9 000 lines of code2. Additionally, it includes a base64 implementation

(about 300 lines) and md5 code (about 150 lines). For systems that do not

provide libident, this library is distributed as well (circa 600 lines); an available
shared library has higher precedence in linking, though.

The only mandatory dependency is glib—a cross-platform software utility li-
brary, originated in the GTK+ project. It provides safe replacements for many

standard library functions, especially for the string functions. It also offers
handy data containers, easy-to-use implementations of data structures, and

much more.

Some parts of masqmail’s functionality can be included or excluded at compile

time by defining symbols. To enable maildir support for example, one has to

add --enable-maildir to the configure call. Otherwise the concerning code
gets removed during preprocessing.

With masqmail comes the small tool mservdete
t; it helps setting up a con-
figuration that uses the mserver system for online state detection. Two other

binaries get compiled for testing purposes: readtest and smtpsend. These
three additional programs use parts of masqmail’s source code; they only add

a file with a main() function each.

Features

masqmail supports two channels for incoming mail:

1. Standard input which is used when masqmail (or the sendmail link) is

executed on the command line

2. A TCP socket which is used by local or remote clients that talk SMTP

The outgoing channels for mail are:

2Measured with sloccount by David A. Wheeler [32].

CHAPTER 1. INTRODUCTION 8

masqmail

remote (SMTP)

local (stdin)

remote (SMTP)

local (pipe)
command

local (delivery)

mailboxes

online state

Figure 1.3: Incoming and outgoing channels of masqmail

1. Direct delivery to local mailboxes (in mbox or maildir format)

2. Local pipes to pass mail to a program (e.g. to MDAs or to gateways to
FAX or UUCP)

3. TCP sockets to transfer mail to other MTAs using the SMTP protocol

Figure 1.3 shows this as a picture. (The “online state” input is explained a bit
later.)

Outgoing SMTP connections feature SMTP-AUTH and SMTP-after-POP authentica-
tion but incoming connections do not. Using wrappers for outgoing connec-

tions is supported. This allows encrypted communication through a gateway
application like openssl.

Mail queuing is essential for masqmail and thus supported of course, alias
expansion is also supported.

The masqmail executable can be called by various names for sendmail-compa-
tibility reasons. As many programs expect the MTA to be located at /usr/lib/sendmail or /usr/sbin/sendmail, symbolic links are pointing from there to
the masqmail executable. Furthermore does sendmail support calling it with

a different name instead of supplying command line arguments. The best

known of these shortcuts is mailq which is equivalent to calling it with the
argument -bq. masqmail recognizes the shortcuts mailq, smtpd, mailrm, runq,rmail, and in.smtpd. The first two are inspired by sendmail. Not implemented
yet is the shortcut newaliases because masqmail does not generate binary

representations of the alias file.3 hoststat and purgestat are missing for

complete sendmail-compatibility.

Additional to the MTA job, masqmail also offers mail retrieval services by acting

as a POP3 client. It can fetch mail from different remote locations, also depen-
dent on the active online connection. Such functionality is especially useful in

a setup like Scenario 2 on page 6.

3A shell script named newaliases that invokes masqmail -bi can provide the command to
satisfy strict requirements.

CHAPTER 1. INTRODUCTION 9

Online detection and online routes

masqmail focuses on handling different non-permanent online connections,

thus a concept of online routes is used. One may configure any number of
routes to send mail. Each route can have criteria to determine if some message

is allowed to be sent over it. Mail to destinations outside the local network

gets queued until a suitable online connections is available.

The idea behind this concept is sending mail to the Internet through the mail

server of the same ISP over which one had dialed in. It was quite common
that ISPs accepted mail for relay only if it came from a online connection they

managed. This means, it was not possible to relay mail through the mail
server of one ISP while being online through the connection of another ISP.

masqmail is a solution to the wish of switching the relaying mail server easily.

Related is masqmail’s ability to rewrite the sender’s email address dependent

on which ISP is used. This prevents mail from being likely classified as spam.

To react on the different situations, masqmail needs to query the current online

state. Is an online connection available? And if it is: Which one? Three

methods are implemented:

1. Reading from a file

2. Reading the output of a command

3. Querying an mserver system

Each method may return a string naming the route that is online or returning

nothing to indicate offline state.

Mail for hosts inside the local network or for users on the local machine is not

touched by this concept; such mail is always sent immediately.

1.3 Why masqmail is worth it

First of all, masqmail is better suited for its target field of operation (multi-

ple non-permanent online connections) than any other MTA. Especially is such
usage easy to set up because masqmail was designed for it. Many alterna-

tive MTAs were not designed for those scenarios as the following two example

show: “Exim is designed for use on a network where most messages can be
delivered at the first attempt.” [Haz01, page 30]. And: “qmail was designed

for well-connected hosts: those with high-speed, always-on network connec-
tivity.” [Sil02, page9].

masqmail make it easy to run an MTA on workstations or notebooks. There is
no need to do complex configuration or to be a mail server expert. Only a

handful of options need to be set; the host name, the local networks, and one

route for relaying are sufficient in most times.

Probably users say it best; in this case Derek Broughton:

CHAPTER 1. INTRODUCTION 10

No kidding. The whole point is that you _have_ to have an MTA and

you don’t want to configure Postfix/Exim/Sendmail/Qmail (almost all of

which I’ve actually done).

I now use masqmail – it’s really simple, my configuration is all in debconf,

it’s supported by whereami, and it’s really simple :-)

I’m sure you can make any MTA behave nicely when offline, but it was a

chore with all of them. [27, post #8]

Not to forget masqmail’s size. masqmail is much smaller than full-blown MTAs

like sendmail, postfix, or exim, and still smaller than qmail. (See section 3.3 for

details.) This makes masqmail a good choice for workstations or even embed-
ded computers.

Again words of a user who chose masqmail as MTA on his old laptop with a 75

megahertz processor and eight megabytes of RAM:

Masqmail appears to be a great sendmail replacement in this case. It’s

small and is built to support sending mail “off-line”, and to connecting to

the SMTP servers of several ISPs. [25]

masqmail is also used in a scientific project: Wolfgang Leister chose masq-

mail for the prototype implementation of the HikerNet [Lei04]. The HikerNet is
an ad-hoc network for peer-to-peer communication in otherwise network-less

areas. Unfortunately, the usage of masqmail for the prototype is not docu-
mented. The author of this thesis received the information in private email

communication with Leister in October 2008. Leister stated, he chose masq-

mail as email-to-hikernet gateway because it was well suited and easy to set
up for this particular usage. Other MTAs would have been possible choices,

but it was easier with masqmail.

Although the development of masqmail has been stopped in 2003, masqmail still

has its users. Having users is already reason enough for further development
and maintenance. This applies especially when the software covers a niche

and when requirements for such software in general changed. Both is the

case for masqmail.

It is difficult to get numbers about users of Free Software because no one

needs to tell anyone when he uses some software. Debian’s popcon statistics
[21] are a try to provided numbers. For January 2009, the statistics report 60

masqmail installations of which 49 are in active use. If it is assumed that one
third of all Debian users report their installed software4, there would be in

total around 150 active masqmail installations in Debian. Ubuntu which also

does popcon statistics [23], counts 82 installations with 13 active ones. If here
also one third of all systems submit their data, 40 active installations can be

added. Including a guessed amount of additional 30 installations on other

Unix operating systems makes about 220 masqmail installations in total. Of

4One third is a high guess as it means there would be only about 230 thousand Debian in-
stallations in total. But according to the Linux Counter [22] between 490 thousand and 12 million
Debian users can be estimated.

CHAPTER 1. INTRODUCTION 11

course one person may have masqmail installed on more than one computer,

but a total of 150 different users seems to be realistic.

One thing became clear now: masqmail has users. And software that is used

should be developed and maintained.

1.4 Problems to solve

A program that is neglected for more than five years in a field of operation
that changed during this time surely needs improvement. Security and spam

have highly increased in importance since 2003. Dial-up connections became

rare, instead broadband flat rates are common now. Other MTAs evolved in
respect to theses changes—masqmail did not.

The current market situation and trends for the future need to be identified.
Looks at other MTAs need to be taken. Required work on masqmail needs to be

defined in combination with the evaluation of strategies to do this work. And
a plan for further development should be created.

1.5 Delimitation

This thesis is neither a installation guide for masqmail nor a detailed explana-

tion of masqmail’s source code. Installation and setup guides can be found on
masqmail’s homepage [24].

The POP3 functionality of masqmail receives few regard in this document be-
cause it is not directly related to the core of masqmail which is being an MTA.

The mserver system to query the online state is also only mentioned but not

regarded further. It seems best to move this functionality into a separate
program which is run through the shell command interface, anyway.

Chapter 2

Market analysis

This chapter analyzes the current situation and future trends for electronic

communication in general and for email in particular. First email’s position
within other electronic communication technologies is located. Then trends

for the whole field of electronic communication are shown. Afterwards op-
portunities and threats in the market and trends for email are identified. The

insights of these analysis result in a summary of things that are important for

developing future-proof email software.

2.1 Electronic communication technologies

Electronic communication is “communication by computer”, according to the

WordNet database of the Princeton University [42]. Mobile phones and fax
machines should be seen as computers here, too. The Science Glossary of the

Pennsylvania Department of Education [17] describes electronic communication

as “System for the transmission of information using electronic technology
(e.g., digital cameras, cellular telephones, Internet, television, fiber optics).”

Electronic communication needs no transport of tangible things, only elec-
trons, photons, or radio waves need to be transmitted. Thus electronic com-

munication is fast in general. With costs mainly for infrastructure and very

low costs for data transmission is electronic communication also cheap com-
munication. Primary the Internet is used as underlying transport infrastruc-

ture. Thus electronic communication is available nearly everywhere around

the world. These properties—fast, cheap, available—make electronic commu-
nication well suited for long distance communication.

As globalization proceeds and long distance communication becomes more
and more important, the future for electronic communication is bright.

Electronic communication includes the following technologies: electronic mail

(email), Instant Messaging (IM), chats (e.g. IRC), short message service (SMS),
multimedia message service (MMS), voice mail, video messages, and Voice

over IP (VoIP).

12

CHAPTER 2. MARKET ANALYSIS 13

email
SMS

voice mail
video messages

Instant Messaging
chat

VoIP
video conferencing

written recorded

asyncronous
(messages)

syncronous
(dialog)

Figure 2.1: Classification of electronic communication technologies

2.1.1 Classification

Electronic communication technologies can be divided in synchronous and

asynchronous communication. Synchronous communication is direct dialog
with little delay. Telephone conversation is an example. Asynchronous com-

munication consists of independent messages. Dialogs are possible as well,

but not in the same direct fashion. These two groups can also be split by the
time which is needed for data delivery. Synchronous communication requires

nearly real-time delivery, whereas for asynchronous communication message

delivery times of several seconds or minutes are sufficient.

Another possible separation is to distinguish recorded and written informa-
tion. Recorded information, like audio or video data, is accessible only in a

linear way by spooling and replay. Written information, on the other hand,

can be accessed in arbitrary sequence, detail, and speed.

Lenke and Schmitz use the same criteria to classify new media [LS95]. They

additionally divide into local and remote communication—the latter is pre-
sumed here—and by the number of communication participants. A classifica-

tion by participant structure is omitted here, as communication technologies
for many-to-many communication (like chat rooms) are usable for one-to-one

(private chat) too, and ones for one-to-one (email) are usable for many-to-

many (mailing lists).

Figure 2.1 shows a classification of communication technologies by the prop-

erties synchronous/asynchronous and written/recorded. Email and SMS are
examples for written and asynchronous communication; IM and chats are ones

for written but synchronous communication. Voice mail and video messages
stand as examples for recorded asynchronous communication. VoIP represents

recorded synchronous communication.

One might be surprised to find Instant Messaging not in the group of message

communication. Instant Messaging could be put in both groups because it

allows asynchronous communication additional to being a chat system. The
reasons why it is classified as dialog communication are its primary use for

dialog communication and the very fast—instant—delivery time.

CHAPTER 2. MARKET ANALYSIS 14

introduction growth mature saturation decline

time

market share,
importance,
etc.

video
messages

voice
mail

Voice
over IP

instant
messaging

email
telefax

Figure 2.2: Life cycle of electronic communication technologies

Email is not limited to written information, at least not anymore since the

advent of MIME, which allows to include multimedia content in textual email
messages. Thus recorded information can be sent as sub parts of emails. The

same applies to Instant Messaging too, where file transfer is an additional

sub service offered by most systems. In general recorded information can be
transmitted in an encoded textual form.

2.1.2 Life cycle analysis

Life cycle analysis are common for products but also for technologies. This
one here is for electronic communication technologies. The first dimension

regarded is the life time of the subject. It is segmented into the introduction,

growth, mature, saturation, and decline phases. The second dimension can
display market share, importance, or similar values. The graph has always

an S-line shape, with a slow start, a rapidly increasing first half, the highest
level in the fourth fifths, and a slowly declining end. Reaching the end of the

life cycle means that the subject gets superseded by successors or the market

situation changed thus it is old-fashioned.

The current position on the life cycle of some selected communication tech-

nologies is shown in figure 2.2. It is important to notice that the time dimen-
sion can be different for each technology—some life cycles are shorter than

others—the shape of the graph, however, is the same.

Video messages and voice mail are technologies in the introduction phase.

Voice over IP is heavily growing these days. Instant Messaging has reached
maturation and is still growing. Email is an example for a technology in the

saturation phase. Fax, for instance, is a declining technology.

Email ranges in the saturation phase which is defined by a saturated market.

No more products are needed: there is no more growth. This means, email is

CHAPTER 2. MARKET ANALYSIS 15

a technology which is used by everyone who want to use it. It is a standard

technology. The current form of email in the current market is on the top of

its life cycle. The future is decline, sooner or later.

But life cycles positions change as the subject or the market changes. An ex-

amples is the Flash animation software [26]. The product’s change from a
drawing and animation system to a technology for website creation, adver-

tising, and movie distribution, and the thus changing target market, made it
slip back on the life cycle. If the email system would evolve to become the

basis for Unified Messaging (see section 2.1.3), a similar slip back would be

the consequence.

The DVD standards DVD+ and DVD− are an example for a changing market.

With the upcoming next generation formats Blu-ray Disc [33] and HD-DVD [35],
a much sooner decline of DVD+ and DVD− started, even before they reached

their last improvement steps in storage size. Such can happen to email too, if
Unified Messaging is a revolution to the email system instead of an evolution.

2.1.3 Trends

Following are the trends for electronic communication. They are shown from

the view point of MTAs. Nevertheless are these trends common for all of the
communication technology.

Consolidation

There is a consolidation of communication technologies with similar transport
characteristics going on, nowadays. Email is the most flexible kind of asyn-

chronous communication technology in major use. Hence email is the best

choice for transferring messages of any kind today. But in future it proba-
bly will be Unified Messaging, which tries to group all types of asynchronous

messaging into one communication system. It aims to provide transparent

transport for all kinds of content and flexible access interfaces for all kinds of
clients. Unified Messaging seems to have the potential to be the successor of

all asynchronous communication technologies, including email.

Today email still is the major asynchronous communication technology and

it probably will be it for the next years. Unified Messaging needs similar
transfer facilities as email, thus it seems to be rather an evolution to the current

technology than a revolution. Hence MTAs will still be of importance in future,

though maybe in a modified form.

Integration

Integration of communication technologies becomes popular. This goes be-

yond consolidation, because communication technologies of different kinds
are bundled together to make communication more convenient for human

CHAPTER 2. MARKET ANALYSIS 16

beings. User interfaces tend to go the same direction. The underlying tech-

nologies are going to get grouped. But it seems as if synchronous and asyn-

chronous communication can not be joined together in a sane way, thus they
will probably only merge at the surface.

Communication hardware

Communication hardware comes from two different roots: On one side, the

telephone, now available as mobile phones. This group centers around re-

corded data and dialog but messages are also supported by the answering
machine and SMS. On the other side, mail and its relatives like email, which

use computers as main hardware. This part centers around document mes-

sages but also supports dialog communication in Instant Messaging and Voice
over IP.

The last years finally brought the two groups together, with smart phones be-

ing the merging hardware element. Smart phones are computers in the size

of mobile phones or mobile phones with the capabilities of computers, how-
ever one likes to see it. They provide both functions by being telephones and

computers.

Smart phones match well the requirements of recorded data for which they

were designed. Text is difficult to write with their minimal keyboards, but
speech to text converters may provide help in future. This leads to a need for

ordinary computers for the field of exchanging text documents and as better
input hardware for all written information.

It seems as if a combination of desktop computers and smart phones will be
the hardware used for communication in future. Both specialized to the best

matching communication technologies but with support for the others, too.

Hence facilities for transferring information off and onto the devices will be
needed.

Unified Communication

Unified Communication is the technology that aims to consolidate and integrate

all electronic communication and to provide access for all kinds of hardware

clients. Unified Communication tries to bring the three trends here mentioned
together. The PC Magazine has the following definition in its Encyclopedia:

“[Unified Communications is t]he real-time redirection of a voice, text or e-

mail message to the device closest to the intended recipient at any given time.”
[18]. The main goal is to integrate all kinds of communication (synchronous

and asynchronous) into one system, hence this requires real-time delivery of
data.

According to Michael Osterman, Unified Communications is already possi-
ble as far as various incoming sources are routed to one storage where mes-

sages can be accessed by different clients [Ost08]. But a system with an “intel-
ligent parser of a single data stream into separate streams that are designed

to meet the real-time needs of the user” is a goal for the future, he says.

CHAPTER 2. MARKET ANALYSIS 17

The question is whether the integration of synchronous and asynchronous

communication does make sense. A communication between one person talk-

ing on the phone and the other replying with an instant messenger, certainly
does (assumed the text-to-speech and speech-to-text converting is fast and the

quality good enough). But transferring large video messages with the same
technology as real-time communication data, possibly does not.

Unified Messaging

Unified Messaging, although often used exchangeable with Unified Commu-

nications, is only a subset of it. It does not require real-time data transmis-
sion and is therefore only usable for asynchronous communication [40]. Uni-

fied Messaging’s basic function is: Receiving incoming messages from various
channels, converting them into a common format, and storing them into a sin-

gle memory. The stored messages can then be accessed from different devices

[41].

The easiest way to implement Unified Messaging is to base it on either email

and convert all input sources to email messages (as attachments for instance)
and store them in the user’s mailbox, or use the telephone system as basis and

convert text messages to speech. Both is technically possible for asynchronous
communication.

Finally, a critical voice from Jesse Freund, who voted Unified Messaging on
top of a hype list, published by Wired.com ten years ago. His description of

the technology ended with the humorous sentences:

Unified messaging is a nice idea, but a tough sell: The reason you bought

a cell phone, a pager, and a fax/modem is because each does its job well.

No one wants to download voice mail as a series of RealAudio messages or

sit through a voice mail bot spelling out email, complete with ‘semicolon

dash end-parenthesis’ for ;-). [Fre98]

2.2 Electronic mail

After viewing the whole market of electronic communication, a zoom into the

market of electronic mail follows. Email is an asynchronous communication
technology that focuses on the transport of textual information. The market

situation for email is important, because this thesis is about an MTA. Interesting

questions are: Is email future-safe? How will electronic mail change? Will
it change at all? Which are the critical parts? These questions matter when

deciding the directions for further development of an MTA. They are discussed
in this section.

CHAPTER 2. MARKET ANALYSIS 18

2.2.1 SWOT analysis

A SWOT analysis regards the strengths and weaknesses of a subject against

the opportunities and threats of its market. The slightly altered form called
Dialectical SWOT analysis, which is used here, is described in [LH04]. SWOT

analysis should always focus on a specific goal which is to reach. In this case,

the main goal is to make email future-safe.

The two dimension—the subject and the market—are regarded in relation to
each other by the analysis. Here the analysis shall be driven by the market’s

dimension. Thus first threats of the market are identified and split into being

strengths or weaknesses of email. Then the same is done for opportunities of
the market.

Threats

The market’s main threat is spam, also named junk mail or unsolicited commercial

email (UCE). David A. Wheeler is clear about it:

Since receivers pay the bulk of the costs for spam (including most obviously

their time to delete all that incoming spam), spam use will continue to rise

until effective technical and legal countermeasures are deployed, or until

people can no longer use email. [Whe03]

The amount of spam is huge. Panda Security and Commtouch write in

their Email Threats Trend Report for the second Quarter of 2008: “Spam lev-
els throughout the second quarter averaged 77 %, ranging from a low of 64 %

to a peak of 94 % of all email [...]” [Pan08, page 4]. The report sees the main

source of spam in bot nets consisting of zombie computers: “Spam and mal-
ware levels remain high for yet another quarter, powered by the brawny yet

agile networks of zombie IPs.” [Pan08, page 1]. This is supported by IronPort
Systems: “More than 80 percent of spam now comes from a ‘zombie’—an in-

fected PC, typically in a consumer broadband network, that has been hijacked

by spammers.” [Iro06]. Positive for MTAs is that they are not the main source
for spam, but it is only a small delight. Spam is a general weakness of the

email system because it is not stoppable.

Opportunities

Opportunities of the market are large data transfers, originating in multimedia
content, which becomes popular. If email is used as basis for Unified Messag-

ing, lots of voice and video mail will be transferred. Email is weak related to
this kind of data: The data needs to be encoded to ASCII which stresses mail

servers a lot. Additionally a lot of traffic is generated by the store-and-forward

transfer, which SMTP uses.

The use of different hardware to access mail is another opportunity of the

market. But as more hardware gets involved, the networks become more

CHAPTER 2. MARKET ANALYSIS 19

standard
modular

extensible
—

large data transfers
complex networks

spam

opportunities
of the market

threats
of the market

strengths
of email

weaknesses
of email

Figure 2.3: SWOT analysis for email

complex. Thus the need for more software and infrastructure to transfer mail

within the growing network might be a weakness of the email system.

An opportunity of the market and at the same time a strength of electronic

mail is its standardization. Few other communication technologies are stan-
dardized, and thus freely available, in a similar way. Another opportunity

and strength is the modular and extensible structure of electronic mail; it can
easily evolve to new requirements.

The increasing integration of communication channels is an opportunity for
the market. But deciding whether it is a weakness or strength of email is

difficult. Due to the impossibility to integrate synchronous stream data and

large binary data, it is a weakness. But it is also a strength, because arbitrary
asynchronous communication data already can be integrated. On the other

hand, the integration might be a threat too, because integration often leads to
complexity of software. Complex software is more error prone and thus less

reliable. This, however, could again be a strength of electronic mail because

its modular design decreases complexity.

Figure 2.3 displays the SWOT analysis in a handy overview. It is obvious to
see, that the opportunities outweigh. This is an indicator for a still increasing

market.

Resulting strategies

The result of a SWOT analysis is a set of strategies that advice how to best react
on the identified opportunities and threats, dependent on whether they are

strengths or weaknesses of the subject. These strategies are what should be
done to achieve the overall goal—here making email future-safe.

Threats of the market that are weaknesses of the subject should be avoided if
possible, or one should prepare against them if they are impossible to avoid.

As spam is unavoidable, email must prepare against it. The goal is to reduce
spam to a bearable level. Spam fighting, with currently used protocols, is a

war where the good guys must lose. Investing high effort will result in few

CHAPTER 2. MARKET ANALYSIS 20

gain. Hence enough spam protection should be provided, but not more. New

concepts and protocols will change this fight; they must be in use before email

has become unusable.

Threats that are strengths of the subject should be confronted. Here none were

identified.

For opportunities of the market that are weaknesses of the subject, solutions
should be searched. Large data transfers and infrastructures with nodes that

move within the network, are of such kind. As a lot of potential is available,

it should be used to develop solutions, to remove the weaknesses.

Finally, opportunities that are strengths of the subject. These are standard-

ization, modularity, and extendability. They should be exploited to go even
further, these are the key advantages of email.

2.2.2 Trends for electronic mail

Nothing remains the same, neither does the email technology. Emailing in

future will probably differ from emailing today. This section tries to identify

possible trends that affect the future of electronic mail.

Provider independence

Today’s email structure is heavily dependent on email providers. This means,

most people have email addresses from some provider. These can be providers
that offer email accounts in addition to their regular services, for example

online connections. AOL and T-Online for instance do so. Or specialized email

providers that commonly offer free mail as well as enhanced mail services for
which one has to pay. Examples for specialized email providers are GMX and

Yahoo.

Outgoing mail is send either with the web mail client of the provider or by

using an MUA which sends it to the provider for relay. Incoming mail is read
with the web mail client or retrieved from the provider via POP3 or IMAP to

the local computer to be read using the MUA. This means all mail sending and

receiving work is done by the provider.

The reason therefore is originated in the time when people used dial-up con-

nections to the Internet. A mail server needs to be online to receive email.
Sending mail is no problem, but receiving it is hardly possible with an MTA

which is few time online. Internet service providers had servers that were all
day long connected to the Internet. So they offered email service, and they

still do.

Nowadays, dial-up Internet access became rare; the majority of the users has

broadband Internet access. As a flat rate is payed for it, the time being online

does not affect costs anymore, even traffic is unlimited. Today it is possible to
have an own mail server running at home. The remaining technical problem

CHAPTER 2. MARKET ANALYSIS 21

is the changing IP addresses one gets assigned every 24 hours1. But this is

solvable with one of the dynamic DNS services; they provide the mapping of

a fixed domain name to the changing IP addresses.

Home servers become popular for central data storage and multimedia ser-

vices, these days. Being assembled of energy efficient hardware, power con-
sumption is no big problem anymore. These home servers will replace video

recorders and CD music collections in the near future. It is also realistic that
they will manage heating systems and intercoms, too. Given the future leads

to this direction, it will be a logical step to have email and other communica-

tion provided by the own home server as well.

After years in which MTAs have not been popular for users, the next years

might bring the MTAs back to the users. Maybe in a few years nearly everyone
will have one, or many, running at home.

Pushing versus polling

The retrieval of email is a field that is also about to change these days. The old
way is to fetch email by polling the server that holds the personal mailbox.

This polling is normally done in regular intervals, often once every five to

thirty minutes. The mail transfer from the mailbox to the MUA is initiated from
the user side. The disadvantage herewith is the delay between the arrival of

mail on the server and the time when the user finally has the message on his
screen.

To remove this disadvantage, push email [29] was invented. Here the server is
not polled every few minutes about new mail, but the server pushes new mail

directly to the client on arrival. The transfer is initiated by the server. This

concept became popular with smart phones; they were able to do emailing
but the traffic caused by polling the server was expensive.

The concept works well with mobile phones where the provider knows about
the client, but it does not seem to be a choice for computers, since the provider

needs to have some kind of login to push data to the user’s computer. Push
email, however, could swap over to computers when using a home server and

no external provider. A possible scenario is a home server which receives

mail from the Internet and pushing it to own workstations and smart phones.
The configuration could be done by the user by using some simple interface,

like one configures his telephone system to have different telephone numbers
ringing on specified phones.

Another problem is when multiple clients share one mailbox. This is only
solvable by working directly in the server’s mailbox, which causes lots of

traffic, or by storing at least information about read messages and the like

there.

1At least this is the situation in Germany.

CHAPTER 2. MARKET ANALYSIS 22

New email concepts

Changing requirements for email communication lead to the need for new

concepts and new protocols that cover these requirements. One of these con-
cepts to redesign the email system is named Internet Mail 2000 [4]. It was

proposed by Daniel J. Bernstein, the creator of qmail. Similar approaches

were independently introduced by others, too.

As main change, the sender has the responsibility for mail storage; only a
notification about a mail message gets sent to the recipient. The recipient can

then fetch the message then from the sender’s server. This is in contrast to the

SMTP mail architecture where mail and the responsibility for it is transferred
from the sender to the receiver. (See page 2 for the store-and-forward principle.)

MTAs are still important in this new email architecture, but in a slightly dif-

ferent way. They do not transfer mail itself anymore, but they transport the
notifications about new mail to the destinations. This is a quite similar job as

in the SMTP model. The real transfer of the mail, however, can be done in an

arbitrary way, for example via FTP or SCP.

A second concept, this one primary to arm against spam, is David A. Whee-

ler’s Guarded Email [Whe03]. It requires messages to be recognized as Ham
(non-spam) to be accepted, otherwise a challenge-response authentication will

be initiated.

Hashcash by Adam Back—a third concept—tries to limit spam and denial of

service attacks [Bac02]. It requests payment for email. The costs are com-
puting time for the generation of hash values. Thus sending spam becomes

expensive. Further information about Hashcash can be found on [2].

New concepts, like the ones presented here, are invented to remove problems

of the email technology. Internet Mail 2000, for instance, removes the spam

problem and the problem of large message transfers.

2.2.3 Important properties in future

Easy configuration Provider independence through running an own mail
server at home asks for easy configuration of the MTA. Providers have spe-

cialists to configure the systems, but ordinary people do not. Solutions are
either having some home service system for computer configuration estab-

lished with specialists coming to ones home to set up the systems; like it is

already common for problems with the power and water supply systems. Or
configuration needs to be easy and fool-proof, so it can be done by the owner

himself. The latter solution depends on standardized parts that fit together

seamlessly. The technology must not be a problem itself. Only settings that
are custom to the users environment should be left open for him to set. This of

course needs to be doable using a simple configuration interface like a web in-
terface. Non-technical educated users should be able to configure the system.

CHAPTER 2. MARKET ANALYSIS 23

Complex configuration itself is not a problem if simplification wrappers pro-

vide an easy interface. The approach of wrappers to make it look easier to the

outside is a good concept in general. It still lets the specialist do complex and
detailed configuration while also a simple configuration interface to novices

is offered. sendmail took this approach with the m4 macros [All06]. Further
more is this approach well suited to provide various wrappers with different

user interfaces (e.g. graphical programs, websites, command line programs;

all of them either in a questionnaire style or interactive).

Performance When MTAs become popular on home servers and maybe even

on workstations and smart phones, then performance will be less important.

Providers need MTAs that process large amounts of mail in short time. There
is no need for home servers and workstations to handle that much mail; they

need to process far less email messages per time unit. Thus performance will

probably not be a main requirement for an MTA in future, given they mainly
run on private machines.

Flexibility New mailing concepts and architectures like push email or Inter-

net Mail 2000 will, if they succeed, require MTAs to adopt the new technology.
MTAs that are not able to change are going to be sorted out by evolution. Thus

it is important not to focus too much on one use case, but to stay flexible.
Allman saw the flexibility of sendmail one reason for its huge success (see

section 3.2.2).

Security Another important requirement for all kinds of software is security.

There is a constant trend coming from completely non-secured software, in the
70s and 80s, over growing security awareness, in the 90s, to security being a

primary goal, now. This leads to the conclusion that software security will be
even more important within the next years. As more clients get connected to

the Internet and especially more computers are listening for incoming connec-

tions (like an MTA in a home server), there are more possibilities to break into
systems. Securing of software systems will require increasing effort in future.

Out-of-the-box usage Plug-and-play-able hardware with preconfigured soft-
ware can be expected to become popular. Like someone buys a set-top box

to watch Pay-TV today, he might be buying a mail server box in a few years.

He plugs the power cable in, inserts his email address in a web interface, and
selects the clients (computers or smart phones) to which mail should be send

and from which mail is accepted for relay. That’s all. It would just work then,
like everyone expects it from a set-top box today. Secure and robust software

is a precondition for such boxes to make this vision possible.

In summary: Easy configuration, as well as the somehow opposed flexibility,

will be important for future MTAs. Also will it be security, but not perfor-

mance. MTAs might become more commodity software, like web servers al-

CHAPTER 2. MARKET ANALYSIS 24

ready are today, with the purpose to include it in many systems and the need

of minimal configuration.

2.3 Summary

It seems as if electronic mail or a similar technology has good chances to
survive the next decades.

Asynchronous communication It is assumed that it always will be impor-

tant to send information messages. Those can be notes from people or notifi-
cations from systems. No other current available communication technology

is as suitable for this kind of information transfer, as email, SMS, voice mail,

or any other asynchronous communication technology. Synchronous com-
munication, in contrast, is focused on dialog and typically interrupts people.

The here needed kind of messages should not interrupt people, unless urgent,

and they do not need two-way information exchange. Although synchronous
communication could be used for transferring messages, it is not the best

choice. The best choice is an asynchronous technology. Thus at least one
asynchronous communication technology is likely to survive.

Email and Unified Messaging Whether email will be the surviving one, is

not possible to know by now. It currently seems likely that Unified Messaging
will be the future for asynchronous communication. But Unified Messaging

is more a concept than a technology itself. This concept will base upon one

or many underlying transport technologies, like email, SMS, and the like. Its
goal is to integrate the transport technologies in order to hide them from

the user’s view. Currently, email is the most used asynchronous electronic

communication technology. It is matured, flexible, and extendable, as well as
standardized. These advantages make email a good base transport technology

for Unified Messaging. Anyhow, whether email will be the basis for Unified
Messaging or not, MTAs are a software which is needed for all asynchronous

communication methods: programs that transfer messages from senders to

recipients.

Unified Communication Unified Communication, as next step after Unified

Messaging, is about the integration of synchronous and asynchronous com-

munication channels. It seems impossible to merge the two worlds on basis
of email in an evolutionary way. As only a revolutionary change of the whole

email concept would make that merge possible, it is best to ignore it. New
designed technologies are usually superior to heavily patched and bent old

technologies, anyway. A general merge of synchronous and asynchronous

communication has good chances to be fatal for email.

Until Unified Communication will become reality—if ever—electronic mail

has a good position, also as basis for Unified Messaging.

CHAPTER 2. MARKET ANALYSIS 25

SWOT analysis Not only the market influences email’s future safety, but also

must the email technology itself evolve to satisfy upcoming needs. Actions to

take were discovered by using the SWOT analysis. These are: Prepare against
spam. Search solutions for large data transfers and increasing growth and

ramification of networks. Exploit standardization, modularity, and extend-
ability.

Trends Also needed is awareness for new trends like: Provider indepen-

dence, new delivery concepts, and completely new emailing concepts that in-
troduce new protocols. Easy configuration, as well as the somehow opposed

flexibility, will be important, but not performance. Security will be essential.

What kinds of MTAs will be needed in future? Probably ones running on home

servers and workstations. This is what masqmail was designed for. The dial-up

Internet connections, which are central to masqmail’s design, become rare, but
mobile clients that move between different networks do need similar concepts,

too. This makes masqmail still be a good MTA for such usage. Additionally,
masqmail is small and it is much easier to configure for setups that are common

to workstations and home servers, than other MTAs.

MTAs might become more commodity software, like web servers already are

today, with the purpose to be included in many systems with only minimal

configuration.

masqmail is a valuable program for various situations. Some setups became

rare, but others are expected to become popular in the next years. It is ex-
pected that masqmail’s niche will rather grow than shrink.

Chapter 3

Mail transfer agents

After having analyzed the market for email and having identified upcoming
trends, in the last chapter; this chapter takes a look at MTAs—the intelligent

nodes and thus the most important parts of the email infrastructure. The

MTAs will be grouped by similarities first. Then the four most popular Free
Software MTAs will be presented to the reader in a short overview and with

the most important facts. The end of this chapter is a short comparison of
these programs.

3.1 Types of MTAs

“Mail transfer agent” is a term that covers a variety of programs. One thing is

common to them: They transfer email from a sender to one or many recipients.

This is how Bryan Costales defines an MTA:

A mail transfer agent (MTA) is a highly specialized program that delivers

mail and transports it between machines, like the post office. [CA97]

The Free Dictionary is a bit more concrete on the term:

Message Transfer Agent - (MTA, Mail Transfer Agent): Any program re-

sponsible for delivering e-mail messages. Upon receiving a message from

a Mail User Agent or another MTA, [...] it [...] delivers it to any local ad-

dressees and/or forwards it to other remote MTAs (routing) for delivery to

remote recipients. [7]

Dent and Hafiz agree [Den04, page 19] [Haf05, pages 3-5].

Common to all MTAs is the transport of mail; this is the actual job. Besides this
similarity, MTAs can be very different. Some of them have POP3 and/or IMAP

servers included. Some can fetch mails through these protocols. Others have

26

CHAPTER 3. MAIL TRANSFER AGENTS 27

all features one can think of. And maybe there are some that do nothing else

but transporting email.

Following is a classification of MTAs into groups of similar programs, regard-

ing what is viewable from the outside.

Relay-only MTAs

Also called forwarders. This is the most simple kind of an MTA. It transfers
mail only to defined smart hosts1. Relay-only MTAs do not receive mail from

outside the system and they do not deliver locally. All they do is transfer mail
to a specified smart host for further relay.

Most MTAs can be configured to act as such a forwarder. But this is usually an
additional functionality.

One uses this kind of MTA to give a system the possibility to send mail without
the need to do a lot of configuration. In a local network, usually the clients

are set up with relay-only MTAs, while there is one mail server that acts as a
smart host. The “dumb” clients send mail to this mail server which does all

further work.

Example programs in that group are: nullmailer, ssmtp, and esmtp.

Groupware

Normally the term “groupware” does not mean one single program, but a

suite of programs. They build a framework which is then populated with var-
ious modules that provide the actual functionality. Modules for mail transfer,

file storage, calendars, resource management, Instant Messaging, and more,

are commonly available.

These program suites are used if the main work to do is providing integrated
communication facilities and team working support for a group of people.

Mail transfer is only one part of the problem to solve. The most common

scenario are companies. They use groupware to provide adequate services for
their teams to work efficiently. But one may use groupware on the home server

for the family members, too.

Examples for groupware are: Lotus Notes, Microsoft Exchange, and OpenGroup-

ware.org.

“Real” MTAs

There is a third type of MTAs in between the minimalistic relay-only MTAs and

the feature loaded groupware. Those programs may be named “real MTAs”, or

“proper MTAs”, though there is no common name. They are what is meant
with the term “mail transfer agent”—programs that transfer mail between

hosts.

1smart hosts are mail servers that receive email and route it to the actual destination.

CHAPTER 3. MAIL TRANSFER AGENTS 28

Common to them is their focus on the email transfer, while they are able

to act as smart hosts. Their variety ranges from ones mostly restricted to

mail transfer (e.g. qmail) to others having interfaces for adding further mail
processing modules (e.g. postfix). This group covers everything in between the

other two groups.

Real MTAs include sendmail, exim, qmail, and postfix.

Other segmenting

MTAs can also be split in other ways.

Due to sendmail’s significance in the early times of email, compatibility inter-

faces to sendmail are important for Unix MTAs. The reason is that many mail
applications simply assume the sendmail MTA to be installed on the system.

Being not sendmail-compatible may not matter for some fields of action, but

makes the program ineligible for serving as a general purpose MTA on Unix
systems. Hence being sendmail-compatible is a major property of an MTA.

MTAs without sendmail-compatible interfaces, or at least compatibility add-ons,
will not be covered here. One example for such a program is Apache James.

Another separation can be done between Free Software MTAs and proprietary
ones. Many of the MTAs for Unix systems are Free Software. Only these

are regarded throughout this thesis, because comparing Free Software with

proprietary or commercial software is not what typical users of programs
like masqmail do. Comparison with non-free programs may be a point for

large Free Software projects that try to step into the business world. Small
projects, mostly used by individuals at home, need to be compared against

other projects of similar shape. The document is seen from masqmail’s point

of view—an MTA for Unix systems on home servers and workstations—so
non-free software is out of the way.

masqmail’s position

Now, where does masqmail fit in? It is not groupware nor a simple forwarder,
thus it belongs to the “real MTAs”. Additionally, it is Free Software and is

sendmail-compatible to a large degree. This makes it similar to sendmail, exim,

qmail, and postfix. masqmail is intended to be a replacement for those MTAs.

But: It was not designed to be used as a general replacement for them. (See:

section 1.2.1) In fact, masqmail is only a replacement in some situations. This
primary excludes working in an untrusted environment.

3.2 Popular MTAs

This section introduces a selection of popular MTAs; they are the most likely

substitutes for masqmail. All are sendmail-compatible “smart” Free Software
MTAs that focus on mail transfer, as is masqmail.

CHAPTER 3. MAIL TRANSFER AGENTS 29

Bernstein 2001 O’ReillyNet 2007 MailRadar ?

1 sendmail 42.3 % sendmail 12.3 % sendmail 24 %

2 Microsoft

Exchange

18.4 % postfix 8.6 % postfix 20 %

3 qmail 17.4 % Microsoft
Exchange

7.6 % qmail 17 %

4 IMail 5.9 % qmail 5.3 % Microsoft

Mail

15 %

5 postfix 1.6 % exim 5.0 % exim 13 %

6 exim 1.5 % Cisco 3.0 % IMail 2 %

7 NTMail 1.3 % Barracuda 2.8 % Microsoft
Exchange

1 %

mail security

layers

≈ 4 % mail security

layers

≈ 22 % mail security

layers

≈ 2 %

Table 3.1: Market share of MTAs

The programs chosen to be compared are: sendmail, exim, qmail, and postfix.

They are the most important representatives of the regarded group.

3.2.1 Market share analysis

MTA statistics are rare, differ, and good data is hard to collect. These points
are bad if good statistics are wanted. Thus it is obvious there are only few

available.

Table 3.1 shows the most used MTAs determined by three different statis-
tics. The first was done by Daniel J. Bernstein (the author of qmail) in 2001

[Ber01]. The second is by Simpson and Bekman in 2007 and was published on
O’ReillyNet [SB07]. And the third is from MailRadar.com with unknown date2

[12].

All surveys show high market shares for the four MTAs: sendmail, exim, qmail,

and postfix. Only the Microsoft mail server software and IMail have comparable
large shares. Other Free Software MTAs (smail, zmailer, MMDF, courier-mta) are

less important and seldom used.

The three surveys base on different data. Bernstein took 1 000 000 randomly
chosen IP addresses, containing 39 206 valid hosts; 958 of them accepted SMTP

connections. The O’ReillyNet survey used only domains owned by companies;
in total 400 000 hosts. MailRadar scanned 2 818 895 servers, leading to 59 209

accepted connections.

All surveys show sendmail to be the most popular MTA. postfix, qmail, and exim
are among the top six in each. exim has slightly smaller shares than the other

two. The four programs together share more than half of the market according

2The footer of the website shows “Copyright 2007” but more likely does this refer to the whole
website.

CHAPTER 3. MAIL TRANSFER AGENTS 30

to Bernstein and the MailRadar statistics. O’ReillyNet has their share to be

somewhere between a third and the half. This uncertainty comes from the

large amount of unidentifiable MTAs.

The 22 percent of mail security layers in the O’ReillyNet survey is remarkable.

Mail security layers are software guards between the network and the MTA

that filter unwanted mail before it reaches the MTA. This increases security

by filtering malicious content and by blocking attacks against the MTA. The
large share here may be a result of only regarding business mail servers. The

problem concerning the survey is the disguise of the MTAs that run behind the

security layer. It seems wrong to assume equal shares for the MTAs behind the
guards as for the unguarded MTAs, because mail security layers will be more

often used to guard weak MTAs, as strong ones do not need them so much.
This needs to be kept in mind when looking at the O’ReillyNet survey.

The date of the Mailradar statistics is not known; a mail to Mailradar with
a request for information has not been replied, unfortunately. However, it

seems quite sure that the statistics were published after 2001, caused by the

sendmail and postfix shares. But to decide whether before or after the one from
O’ReillyNet would be just guessing. Possibly it receives constant input and

thus displays a current state.

3.2.2 The four major Free Software MTAs

Now follows a small introduction to the four programs chosen for compari-
son. masqmail is not presented here as it was already introduced in chapter 1.

Longer introductions, including analysis and comparison, were written by

Jonathan de Boyne Pollard [dBP04].

sendmail

sendmail is the best known MTA, since it was one of the first and surely the one

that made MTAs popular. It also was shipped as default MTAs by many Unix
system vendors [37].

The program was written by Eric Allman as the successor of his program
delivermail. Allman was not the only one who was working on the program.

Other people developed own versions of it and a variety of flavors came up,

especially in the late eighties when Allman was inactive [VA01, page 5].

sendmail is designed to transfer mails between different protocols and net-

works, this lead to a very flexible, though complex, configuration.

The program was first released with BSD 4.1c in 1983. The latest version is

8.14.3 from May 2008. The program is distributed under the Sendmail License
as both, free and proprietary software.

Further development will go into the project MeTA1 which succeeds sendmail.

The former name of this new project was sendmail X.

More information can be found on the sendmail homepage [6] and in the, so

called, Bat Book [CA97].

CHAPTER 3. MAIL TRANSFER AGENTS 31

exim

exim was started in 1995 by Philip Hazel at the University of Cambridge. It

is a fork of smail-3, and inherited the monolithic architecture which is similar
to sendmail’s. But having no architecture-given separation of the individual

components of the system did not hurt. Its security is quite good [Bla05].

exim is highly configurable, especially in the field of mail policies. This makes

it easy to specify how mail is routed through the system and who is allowed
to send email to whom. Interfaces to integrate spam and malware checkers

are provided by design, too.

The program is Free Software, released under the GPL. The latest stable version

is 4.69 from December 2007.

One finds exim on its homepage [13]. The standard literature is Hazel’s exim

book [Haz01].

qmail

qmail is seen by its community as “a modern SMTP server which makes send-
mail obsolete” [15]. It was written by Daniel J. Bernstein, starting in 1995.

His primary goal was to create a secure MTA to replace the popular, but vul-
nerable, sendmail. His own words are: “This is why I started writing qmail: I

was sick of the security holes in sendmail and other MTAs.” [3].

qmail first introduced many innovative concepts in MTA design. The most

obvious contrast to sendmail and exim is its modular design. But qmail was not

the first modular MTA. MMDF, which predates even sendmail, was modular, too.
Regardless of MMDF’s modular architecture, qmail is generally seen as the first

security-aware MTA [36].

The latest release of qmail is version 1.03 from July 1998. Afterwards, in

November 2007, qmail’s source was put into the public domain. This made
it Free Software.

Because of Bernstein’s inactivity, though the requirements changed since
1998, “[a] motley krewe of qmail contributors (see the README) has put to-

gether a netqmail-1.06 distribution of qmail. It is derived from Daniel Bern-

stein’s qmail-1.03 plus bug fixes, a few feature enhancements, and some doc-
umentation.” [14].

qmail’s homepages are [3] and [15]. The best book about qmail, from Bern-
stein’s view, is Dave Sill’s handbook [Sil02]. His free available guide “Life

with qmail” is another valuable source [Sil07].

postfix

The postfix project started in 1999 at IBM research, then called VMailer or IBM

Secure Mailer. Wietse Venema’s program “attempts to be fast, easy to admin-

ister, and secure. The outside has a definite Sendmail-ish flavor, but the inside

CHAPTER 3. MAIL TRANSFER AGENTS 32

MTA first
release

regarded
version

lines of
C code

architecture design goals

sendmail 1983 8.14.3 92k monolithic flexibility

exim 1995 4.69 85k monolithic generality,

flexibility,
extensive

checking

qmail 1996 1.03 14k modular security

postfix 1999 2.5.6 87k modular performance
and security

masqmail 1999 0.2.21 10k monolithic non-

permanent
Internet

connections

Table 3.2: Comparison of MTAs

is completely different.” [30]. In fact, postfix was mainly designed after qmail’s

architecture to gain security. But in contrast to qmail it aims much more on
being fast and full-featured.

Today postfix is taken by many Unix systems and GNU/Linux distributions as

default MTA.

The latest stable version is numbered 2.5.6 from December 2008. postfix is

covered by the IBM Public License 1.0 which is a Free Software license.

Additional information can be retrieved from the program’s homepage [30].
Dent’s postfix book [Den04] claims to be “the definitive guide”, and it is.

3.3 Comparison of MTAs

This section does not try to provide a throughout MTA comparison, because
this is already done by others. Remarkable comparisons are the one by Dan

Shearer [She06] and a discussion on the mailing list plug@lists.q-linux.com

[MCB+03]. Tabular overviews may be found at [28], [34], and [Sil07, section
1.9].

Here provided is an overview on important properties of the four previously

introduced MTAs. The data comes from the above stated sources and is col-
lected in table 3.23.

Architecture

Architecture is most important when comparing MTAs. Many other properties

of a program depend on its architecture. Munawar Hafiz discusses in detail

3The lines of code were measured with David A. Wheeler’s sloccount [32].

CHAPTER 3. MAIL TRANSFER AGENTS 33

on MTA architecture, comparing sendmail, qmail, postfix, and sendmail X [Haf05].

Jonathan de Boyne Pollard’s MTA review [dBP04] is a source, too.

Two different architecture types show off: monolithic and modular MTAs.

Monolithic MTAs are sendmail, smail, exim, and masqmail. They all consist of
one single setuid root4 binary which does all the work.

Modular MTAs are MMDF, qmail, postfix, and MeTA1. They consist of several
programs, each doing only a part of the overall job. The different programs

run with the least permissions they need, setuid root can be avoided com-
pletely.

The architecture does not directly define the program’s security, but “[t]he
goal of making a software secure can be better achieved by making the design

simple and easier to understand and verify” [Haf05, chapter 6]. exim, though

being monolithic, has a fairly clean security record. But it is very hard to keep
the security up as the program growth. Wietse Venema (the author of postfix)

says, it was the architecture that enabled postfix to grow without running into
security problems [Ven06, page 13].

The modular design, with each sub-program doing one part of the overall
job, conforms to the Unix Philosophy. The Unix Philosophy [Gan95] demands

“small is beautiful” and “make each program do one thing well”. Monolithic

MTAs fail here.

Today modular MTA architectures are the state-of-the-art.

Spam checking and content processing

Spam and malware increased during the last years. Today it is important for
an MTA to be able to provide checking for bad mail. This can be done by

implementing functionality into the MTA or by invoking external programs to
do this job.

sendmail invented milter5, which is used to interface external programs of var-
ious kind. postfix adopted the milter interface but is also able to easily include

scanning modules into its modular structure. qmail is pretty old and did not

evolve with the changing market situation. Anyhow, its modular structure
enables external scanners to be included into qmail. exim has the advantage

that it was designed with the goal to provide extensive scanning facilities; it
is therefore very good suited to scan itself or invoke external scanners.

Future trends

In chapter 2, it was tried to figure out trends and future requirements for

MTAs. The four programs are compared on these possible future requirements
now.

4setuid lets a program run with the rights of its owner, here root. This is considered to be a
security risk. Thus it it should be avoided if possible.

5“milter” is a common abbreviation for “sendmail mail filter API”.

CHAPTER 3. MAIL TRANSFER AGENTS 34

Provider independence The first trend was provider independence, which

requires easy configuration. postfix seems to do best here. It uses primary

two configuration files (master.
f and main.
f) which are easy to manage.
sendmail appears to have a bad position. Its configuration file sendmail.
f is

cryptic and very complex (it has legendary Turing-completeness) thus it needs
simplification wrappers around it to provide easier configuration. They exist

in form of the m4 macros that generate the sendmail.
f file. Unfortunately,

adjusting the generated result by hand appears to be necessary for non-trivial
configurations. qmail’s configuration files are simple but the whole system

is complex to set up; it requires various system users and qmail is hardly us-
able without applying several patches that add functionality which is required

nowadays. netqmail is the community’s effort to help in the latter point. exim

has only one single configuration file (exim.
onf) which suffers most from
its flexibility—like in sendmail’s case. Flexibility and easy configuration are

almost always contrary goals.

Performance As second trend was the decreasing necessity for high per-
formance identified. This goes along with the move of MTAs from service

providers to home servers. postfix focuses much on performance, this might

not be an important point in the future. Of course there will still be the need
for high performance MTAs, but a growing share of the market will not require

high performance. Energy and space efficiency is related to performance; it is

a similar goal in a different direction. But optimization, be it for performance
or other efficiencies, is often in contrast to simplicity and clarity; these two

improve security. Optimizing does in most times decrease the simplicity and
clarity. Simple MTAs that do not aim for high performance are what is needed

in future. The simple design of qmail6 is a good example.

Security The third trend (even more security awareness) is addressed by

each of the four programs. It seems as if all widely used MTAs provide good
security nowadays. Even sendmail can be configured to be secure today. How-

ever, the modular architecture, used by qmail and postfix, is generally seen to
be conceptually more secure. sendmail’s creators have started MeTA1, a mod-

ular MTA that merges the best of qmail and postfix, to replace the old sendmail.

It will be interesting to watch exim’s future—will it become modular, too?

3.4 Summary

This chapter first took an overview over the field of MTAs. Three major types
of MTAs were identified: Relay-only MTAs (also called forwarders), groupware,

and the “real MTAs”. masqmail belongs to the last group, it is additionally

sendmail-compatible and Free Software.

Next a look at the market shares of MTAs was taken; It showed that four

MTAs of masqmail’s group have high importance: sendmail, postfix, qmail, and

6qmail is still fast

CHAPTER 3. MAIL TRANSFER AGENTS 35

exim. Their combined share is between one third and the half of the market.

The other part splits into proprietary MTAs, unknown software behind mail

security layers, and a reminder of really small market shares.

Each one of the four major Free Software MTAs was presented afterwards and

finally these programs were compared on some selected properties.

Now, the reader should have a general knowledge about those four important
MTAs. Further chapters will refer frequently to them.

Chapter 4

masqmail’s present and future

This chapter identifies requirements for masqmail. They are compared against
the current code to see what is already fulfilled and what is missing. Then

the outstanding work is ordered by relevance and are presented in a list of
pending work tasks. The end of this chapter is the evaluation of the best de-

velopment strategy to get the work done in order to achieve the requirements.

4.1 The goal

Before requirements can be identified and further development can be dis-
cussed, it is important to clearly specify the goal to achieve. This means:

What shall masqmail be like in, for instance, five years?

Should masqmail become more specific to a more narrow niche or rather be-

come more general and move a bit out of its niche? Or should it even become

a totally general MTA like sendmail, exim, qmail, and postfix?

Becoming completely general seems to be no choice because the competitors
are too many and they are already too strong. It would require a strong base of

developers and superior features to establish. There also seems to be no need

for another general purpose MTA additional to those four programs. Thus the
effort would most likely remain a try. Venema stated: “It is becoming less and

less likely that someone will write another full-featured Postfix or Sendmail
MTA from scratch (100 kloc).” [Ven06]. At least masqmail is not going to try that.

masqmail was intended to be a small “real” MTA which covers the niche of

managing the relay over several smart hosts. Small and resource friendly
software is still important for workstations, home servers, and especially for

embedded computers. Other software that focuses on the same niche is not

known. Dial-up connections have become rare but mobile computers that
move between different networks are popular. So, the niche is still present.

What has changed in general is the security that is needed for software. Graff

and van Wyk describe the situation well: “[I]n today’s world, your software

36

CHAPTER 4. MASQMAIL’S PRESENT AND FUTURE 37

is likely to have to operate in a very hostile security environment.” [GvW03,

page 33]. Additionally they say: “By definition, mail software processes in-

formation from potentially untrusted sources. Therefore, mail software must
be written with great care, even when it runs with user privileges and even

when it does not talk directly to a network.” [GvW03, page 90]. As masqmail
is mail software and trusted environments become rare, it is best for masqmail

to become a secure MTA.

In summary, the goal for masqmail is to stay in the current niche with respect

to modern usage scenarios and to become a secure MTA.

4.2 Requirements

This section identifies the requirements for masqmail to reach the above de-

fined goal. Most of the requirements will apply to modern MTAs in general.

4.2.1 Functional requirements

Functional requirements are about the function of the software. They define
what the program can do and in what way. The requirements are named “RF”

for “requirement, functional”.

RF 1: Incoming and outgoing channels sendmail-compatible MTAs must sup-
port at least two incoming channels: mail submitted using the sendmail com-

mand, and mail received on a TCP port. Thus it is common to split the in-

coming channels into local and remote. This is done by qmail and postfix. The
same way is Hafiz’s view [Haf05].

SMTP is the primary mail transport protocol today, but with the increasing
need for new protocols (see section 2.2.3) in mind, support for more than just

SMTP is good to have. New protocols will show up; maybe multiple protocols
need to be supported then. This would lead to multiple remote channels,

one for each supported protocol as it was done in other MTAs. Best would be

interfaces to add further protocols as modules.

Outgoing mail is commonly either sent using SMTP, piped into local com-
mands (for example uu
p), or delivered locally by appending to a mailbox.

Outgoing channels are similar for qmail, postfix, and sendmail X: All of them

have a module to send mail using SMTP, and one for writing into a local mail-
box.

Local mail delivery is a job that uses root privilege to be able to switch to any

user in order to write to his mailbox. It is possible to deliver without being

root privilege, but delivery to user’s home folders is not generally possible
then. Thus even the modular MTAs qmail and postfix use root privilege for this

job. As mail delivery to local users is not included in the basic job of an MTA

and introduces a lot of new complexity, why should the MTA bother? In order

to keep the system simple, reduce privilege, and to have programs that do one

CHAPTER 4. MASQMAIL’S PRESENT AND FUTURE 38

MTA

remote (SMTP)

local (stdin)

remote (SMTP)

local (pipe)

MDA

mailboxes

Figure 4.1: Required incoming and outgoing channels

job well, the local delivery job should be handed over to a specialist: the MDA.

MDAs know about the various mailbox formats and are aware of the problems
of concurrent write access and the like. Hence passing the message, and the

responsibility for it, over to an MDA seems to be best.

This means an outgoing connection that pipes mail into local commands is

required. To other outgoing channels applies what was already said about

incoming channels.

An overview on incoming and outgoing channels which are required for an

MTA, gives figure 4.1. The reader may want to compare this diagram with
masqmail’s incoming and outgoing channels, which are depicted in figure 1.3

on page 8.

RF 2: Mail queuing Mail queuing removes the need to deliver instantly as a
message is received. The queue provides fail-safe storage of mails until they

are delivered. Mail queues are probably used in all MTAs, even in some simple

forwarders. The mail queue is essential for masqmail, as masqmail is intended
for non-permanent online connections. This means, mail must be queued

until a online connection is available to send the message. This may be after a
reboot. Hence the mail queue must provide persistence.

The mail queue and the module(s) to manage it are the central part of the
whole system. This demands especially for robustness and reliability, as a

failure here can lead to mail loss. An MTA takes over responsibility for mail

by accepting it, hence losing mail messages is absolutely to avoid. This covers
any kind of crash situation, too. The worst thing acceptable to happen is an

already sent mail to be sent again.

RF 3: Header sanitizing Mail coming into the system often lacks important
header lines. At least the required ones must be added by the MTA. One

example is the Date: header, another is the, not required but recommended,Message-ID: header. Apart from adding missing headers, rewriting headers

is important, too. Changing the locally known domain part of email addresses

to globally known ones is an example. masqmail needs to be able to rewrite
the domain part dependent on the route used to send the message, to prevent

messages to get classified as spam.

CHAPTER 4. MASQMAIL’S PRESENT AND FUTURE 39

Generating the envelope is a related job. The envelope specifies the actual

recipient of the mail, no matter what the To:, C
:, and B

: headers contain.

Multiple recipients lead to multiple different envelopes, all containing the
same mail message.

RF 4: Aliasing Email addresses can have aliases, thus they need to be ex-

panded. Aliases can be of different kind: another local user, a remote user, a

list of local and remote users, or a command. Most important are the aliases
in the aliases file, usually located at /et
/aliases. Addresses expanding to

lists of users lead to more envelopes. Aliases changing the recipient’s domain
part may require a different route to be used.

RF 5: Route management One key feature of masqmail is its ability to send
mail out over different routes. The online state defines the active route to be

used. A specific route may not be suited for all messages, thus these messages
are hold back until a suiting route is active. For more information on this

concept see section 1.2.2.

RF 6: Authentication One thing to avoid is being an open relay. Open relays

allow to relay mail from everywhere to everywhere. This is a source of spam.

The solution is restricting relay1 access. It may also be wanted to refuse all
connections to the MTA except ones from a specific set of hosts.

Several ways to restrict access are available. The most simple one is restriction
by the IP address. No extra complexity is added this way but the IP addresses

need to be static or within known ranges. This approach is often used to
allow relaying for local nets. The access check can be done by the MTA or by

a guard (e.g. TCP Wrapper [Ven92]) before. The main advantage here is the

minimal setup and maintenance work needed. This kind of access restriction
is important to be implemented.

This authentication based on IP addresses is impossible in situations where
hosts with changing IP addresses, that are not part of a known sub net, need

access. Then a authentication mechanism based on some secret is required.
Three common approaches exist:

1. SMTP-after-POP: Uses authentication on the POP protocol to permit in-
coming SMTP connections for a limited time afterwards. The variant

SMTP-after-IMAP exists, too.

2. SMTP authentication: An extension to SMTP. It allows to request authen-
tication before mail is accepted. Here no helper protocols are needed.

3. Certificates: The identity of a user or a host is confirmed by certificates
that are signed by trusted authorities. Certificates are closely related

to encryption, they do normally satisfy both needs: encrypt the data

transmission and identify the remote user/host.

1Relaying is passing mail, that is not from and not for the own system, through it.

CHAPTER 4. MASQMAIL’S PRESENT AND FUTURE 40

Static authentication is the preferred type for authenticating clients. It should

be chosen if possible. This means if the MTA resides within a trusted network

or it is possible to define trusted network segments on basis of IP addresses,
then static authentication is the best choice.

If the MTA does its job in an untrusted network, if it can be expected that
forged IP addresses will appear, or if mobile clients need access, then dynamic

authentication should be used.

Any combination is possible, too. For example, it is preferred to allow relay

access only to authenticated users. Either clients in local networks which are
authenticated by their IP addresses or remote clients that authenticate by a

secret-based method.

Static authentication is simpler and requires less administration work but it

has limitations. Dynamic authentication should be used if static authentica-
tion reaches its limits. At least one of the secret-based mechanisms should be

supported.

RF 7: Encryption Electronic mail is vulnerable to sniffing attacks, because

in generic SMTP all data transfer is unencrypted. The message’s body, the
header, and the envelope are all unencrypted. But also some authentication

dialogs transfer plain text passwords (e.g. PLAIN and LOGIN). Hence encryption
is throughout important.

The common way to encrypt SMTP dialogs is using Transport Layer Security
(short: TLS, the successor of SSL). TLS encrypts the datagrams of the transport

layer. This means it works below the application protocols and can be used

with any of them [39].

Using secure tunnels that are provided by external programs should be pre-

ferred over including encryption into the application, because the application
needs not to bother with encryption then. Outgoing SMTP connections can

get encrypted using a secure tunnel, created by an external application (like
openssl). But incoming connections can not use external secure tunnels, be-

cause the remote IP address is hidden then; all connections would appear to

come from the local host instead. Figure 4.2 depicts the situation of using an
application like stunnel for incoming connections. The connection to port 25

comes from from local host and exactly this information is available to the
MTA. Authentication based on IP addresses and many spam prevention meth-

ods are useless then.

To provide encrypted incoming channels, the MTA could implement encryp-

tion and listen on a port that is dedicated to encrypted SMTP (SMTPS). This ap-

proach would be possible, but it is deprecated in favor for STARTTLS. RFC 3207

“SMTP Service Extension for Secure SMTP over Transport Layer Security” shows

this by not mentioning SMTPS on port 465. Also port 465 is not even reserved
for SMTPS anymore [1].

STARTTLS—defined in RFC 2487—is what RFC 3207 recommends to use for se-
cure SMTP. The connection then goes over port 25, but gets encrypted when

CHAPTER 4. MASQMAIL’S PRESENT AND FUTURE 41

local host
465

25

SMTP over TLS
(encrypted)

remote
host

stunnel

SMTP
(unencrypted)

MTA

Figure 4.2: Using stunnel for incoming connections

the STARTTLS keyword is issued. Email depends on compatibility—only en-
cryption methods that client and server support can be used. Hence it is best

to act after the recommendations of the RFC documents. This means STARTTLS

encryption should be supported for incoming and for outgoing connections.

RF 8: Spam handling Spam is a major threat nowadays, but it is a war that

is hard to win. The goal is to provide state-of-the-art spam protection, but not
more. (See section 2.2.1.)

As spam is, by increasing the amount of mail messages, not just a nuisance
for end users but also for the infrastructure—the MTAs—they need to protect

themselves.

Filtering spam can be done by either refusing it during the SMTP dialog or by

checking for spam after the mail was accepted and queued. Both ways have

advantages and disadvantages, so modern MTAs use them in combination.

Spam is usually identified by the results of a set of checks. Static rules,

database querying (e.g. DNS blacklists [Col07] [Lev08]), requesting special
client behavior (e.g. greylisting [Har03], hashcash [Bac02]), or statistical anal-

ysis (e.g. bayesian filters [Gra02]) are checks that may be used. Running more
checks leads to better results, but takes more system resources and more time.

Doing some basic checks during the SMTP dialog seems to be a must [EW05,

page 25]. Including these checks into the MTA makes them fast to avoid SMTP

dialog timeouts. For modularity and reusability reasons internal interfaces to
specialized modules seem to be best. Raymond says: “Modularity (simple

parts, clean interfaces) is a way to organize programs to make them simpler.”
[Ray03, chapter 1].

More detailed checks after the message is queued should be done by external
scanners. Interfaces to invoke them need to be defined. (See also the remarks

about amavis in the next section.)

CHAPTER 4. MASQMAIL’S PRESENT AND FUTURE 42

RF 9: Malware handling Related to spam is malicious content (short: mal-

ware) like viruses, worms, and trojan horses. They, in contrast to spam, do

not affect the MTA itself, as they are in the mail’s body. MTAs that search for
malware are equal to post offices that open letters to check if they contain

something that could harm the recipient. This is not a mail transport job. But
by many people the MTA which is responsible for the recipient is seen to be at

a good position to do this work, thus it is often done there. Though, it is nice

to have interfaces to such scanners within the MTA.

In any way should malware checking be performed by external programs that

may be invoked by the MTA. However, MDAs are better points to invoke content
scanners.

A popular email filter framework is amavis which integrates various spam

and malware scanners. The common setup includes a receiving MTA which
sends mail to amavis using SMTP, amavis processes the mail and sends it then

to a second MTA that does the outgoing transfer. (This setup with two MTA

instances is discussed in more detail in section 5.1.3.)

RF 10: Archiving Mail archiving and auditability become more important as

email establishes as technology for serious business communication. Archiv-
ing is a must for companies in many countries. In the United States, the

Sarbanes-Oxley Act [Law02] covers this topic.

It is a goal to have the ability to archive verbatim copies of every mail coming
into and every mail going out of the system, with relation between them.

postfix for example has a always_bcc feature, to send a copy of every outgoing

mail to a definable recipient. At least this functionality should be given, al-
though a more complete approach, like qmail provides, is preferable. qmail is

able to save copies of all sent and received messages and additionally com-
plete SMTP dialogs [Sil02, page 12].

But if archiving is of high importance, a dedicated archiving solution is advis-

able, anyway.

4.2.2 Non-functional requirements

Now follows a list of non-functional requirements for masqmail. These re-
quirements specify the quality properties of a software. The list is based on

Hafiz [Haf05, page 2], with inspiration from Spinellis [Spi06, page 6] and

Kan [Kan03]. These non-functional requirements are named “RG” for “re-
quirement, general”.

RG 1: Security MTAs are critical points for computer security as they are ac-

cessible from external networks. They must be secured with high effort. Prop-
erties like the need for high privilege level, from outside influenced work load,

work on unsafe data, and demand for reliability, increase the need for secu-
rity. This is best done by modularization, also called compartmentalization, as

described in section 4.2.3.

CHAPTER 4. MASQMAIL’S PRESENT AND FUTURE 43

masqmail needs to be secure enough for its target field of operation. masqmail

is targeted to workstations and private networks, with explicit warning to not

use it on permanent online hosts [10]. But as non-permanent online connec-
tions and trustable environments become rare, masqmail’s security should be

so good that it is usable with permanent online connections and in unsafe en-
vironments. For example should mails with bad content not be able to break

masqmail.

RG 2: Reliability Reliability is the second essential quality property for an
MTA. Mail for which the MTA took responsibility must never get lost while it

is within the MTA’s responsibility. The MTA must not be the cause of any mail

loss, no matter what happens. Unreliable MTAs are of no value. However, as
the mail transport infrastructure is a distributed system, one of the commu-

nication partners or the transport medium may crash at any time during mail

transfer. Thus reliability is needed for mail transfer communication, too.

The goal is to transfer exactly one copy of the message. Tanenbaum evaluates
the situation and comes to the conclusion that “in general, there is no way to

arrange this.” [TvS02, pages 377–379]. Only strategies where no mail gets lost

are acceptable; he identifies three of them, but one generates more duplicates
than the others, so two strategies remain. (1) The client always reissues the

transfer. The server first sends an acknowledgment and then handles the

transfer. (2) The client reissues the transfer only if no acknowledgment was
received. The server first handles the transfer and sends the acknowledgment

afterwards. The first strategy does not need acknowledgments at all, however,
it will lose mail if the second transfer fails, too.

Hence, mail transfer between two processes should use the strategy: The client
reissues if it receives no acknowledgment. The server first handles the mes-

sage and then sends the acknowledgment. This strategy only leads to dupli-

cates if a crash happens in the time between the message is fully transferred
to the server and the acknowledgment is received by the client. No mail will

get lost.

RG 3: Robustness Being robust means handling errors properly. Small errors
may get corrected, large errors may kill a process. Killed processes should get

restarted automatically and lead to a clean state again. Log messages should
be written in every case. Robust software does not need a special environ-

ment, it creates a friendly environment itself. Raymond’s Rule of Robustness

and his Rule of Repair are good descriptions [Ray03, pages 18–21].

RG 4: Extendability masqmail’s architecture needs to be extendable to allow
new features to be added afterwards. The reasons for this need are the chang-

ing requirements. New requirements will appear, like more efficient mail
transfer of large messages or a final solution to the spam problem. Extend-

ability is the ability of software to include new function with little work.

CHAPTER 4. MASQMAIL’S PRESENT AND FUTURE 44

RG 5: Maintainability Maintaining software takes much time and effort.

Spinellis guesses “40 % to 70 % of the effort that goes into a software sys-

tem is expended after the system is written first time.” [Spi03, page 1]. This
work is called maintaining. Hence making software good to maintain will ease

all further work.

RG 6: Testability Good testability make maintenance easier too, because
functionality is directly verifiable when changes are done, thus removing the

uncertainty. Modularized software makes testing easier, because parts can be
tested without external influences. Spinellis sees testability as a sub-quality

of maintainability [Spi06].

RG 7: Performance Also called “efficiency”. Efficient software requires few

time and few resources. The merge of communication hardware and its move
from service providers to homes and to mobile devices demand smaller and

more resource-friendly software. The amount of mail will be lower even if
much more mail will be sent, thus time performance is less important. masq-

mail is not a program to be used on large servers, but on small devices. Thus

more important for masqmail will be energy and heat saving, maybe also sys-
tem resources.

As performance improvements are in contrast to many other quality proper-
ties (reliability, maintainability, usability, capability [Kan03, page 5]), jeopar-

dizing these to gain some more performance should not be done. Kernighan

and Pike state clear: “[T]he first principle of optimization is don’t.” [KP99,

page 165]. Simplicity and clearness are of higher value.

RG 8: Availability Availability is important for server programs. They must

stay operational by blocking denial of service attacks and the like. Automated
restarts into a clean state after fatal errors are also required.

RG 9: Portability Source code that compiles and runs on various operation

systems is called portable. Portability can be achieved by using standard fea-
tures of the programming language and common libraries. Basic rules to

achieve portable code are defined by Kernighan and Pike [KP99]. Portable
code lets software spread faster. Portability among the various flavors of Unix

systems is a goal for masqmail, because these systems are the ones MTAs usu-

ally run on. No special care needs to be taken for non-Unix platforms.

RG 10: Usability Usability, not mentioned by Hafiz [Haf05] (he focuses on
architecture) but by Spinellis [Spi06] and Kan [Kan03], is a property which

is very important from the user’s point of view. Software with bad usability is
rarely used, no matter how good it is. If substitutes with better usability exist,

the user will switch to one of them. Here, usability includes setting up and

configuring; the term “users” includes administrators. Having MTAs on home

CHAPTER 4. MASQMAIL’S PRESENT AND FUTURE 45

Figure 4.3: Internal structure of masqmail, showed by a call graph. (Logging

functions are ignored; test and POP3 code is excluded.)

servers and workstations requires easy and standardized configuration. The

common setups should be configurable with little action by the user. Complex
configuration should be possible, but the focus should be on the most common

form of configuration: choosing one of several common setups.

4.2.3 Architecture

masqmail’s current architecture is monolithic like sendmail’s and exim’s. But

more than the other two is it one block of interweaved code. exim has a highly
structured code with many internal interfaces, a good example is the interface

for authentication “modules”. sendmail provides now, with its milter interface,
standardized connection channels to external modules. masqmail has none of

them—it is what sendmail was in the beginning: a single large block.

Figure 4.3 is a call graph generated from masqmail’s source code. It gives an

impression of how interweaved the internals are. There are no compartments

at all.

CHAPTER 4. MASQMAIL’S PRESENT AND FUTURE 46

sendmail improved its old architecture by adding the milter interface, to in-

clude further functionality by invoking external programs. exim was designed,

and is carefully maintained, with a modular-like code structure in mind. qmail
started from scratch with a “security-first” approach, postfix improved on it,

and sendmail X/MeTA1 tries to adopt the best of qmail and postfix to com-
pletely replace the old sendmail architecture. Hafiz describes this evolution of

MTA architecture very well [Haf05].

Every one of these programs is more modular, or became more modular over

time, than masqmail is. Modern requirements like spam protection and proba-

ble future requirements like the use of new mail transport protocols demand
for modular designs in order to keep the software simple. Simplicity is a

key property for security. “[T]he essence of security engineering is to build
systems that are as simple as possible.” [GvW03, page 45].

Hafiz agrees: “The goal of making software secure can be better achieved by
making the design simple and easier to understand and verify.” [Haf05, page

64]. He identifies the security of qmail to come from it’s compartmentalization,

which goes hand in hand with modularity:

A perfect example is the contrast between the feature envy early sendmail

architecture implemented as one process and the simple, modular archi-

tecture of qmail. The security of qmail comes from its compartmentalized

simple processes that perform one task only and are therefore testable for

security. [Haf05, page 64]

Equal does Dent see the situation for postfix: “The modular architecture of

Postfix forms the basis for much of its security.” [Den04, page 7].

Modularity is also needed to satisfy modern MTA requirements in providing a

clear interface to add functionality without increasing the overall complexity
much.

Modularity is no direct requirement but a goal that has positive influence on
important requirements like security, testability, extendability, maintainability,

and not least simplicity. These quality properties then, on their part, make it
easier to achieve the functional requirements.

Hence, aspiration for modularity, by compartmentalization, improves the over-
all quality and function of the software. It can be seen as an architectural

requirement for a secure and modern MTA.

4.3 Fulfilled requirements

Here follows a description of how far the requirements are already fulfilled
by masqmail.

CHAPTER 4. MASQMAIL’S PRESENT AND FUTURE 47

RF 1: In/out channels The incoming and outgoing channels that masqmail al-

ready has (depicted in figure 1.3 on page 8) are the ones required for an MTAs

at the moment. Currently, support for other protocols seems not to be neces-
sary, although new protocols and mailing concepts are likely to appear (see

section 2.2.2). As other protocols are not required today, masqmail is regarded
to fulfill RF 1. Without any support in masqmail for adding further protocols,

the best strategy is to delaying such work until the functionality is essential,

anyway.

RF 2: Queuing One single mail queue is used in masqmail. It satisfies all

current requirements.

RF 3: Header sanitizing The envelope and mail headers are generated when

the mail is put into the queue. The requirements are fulfilled.

RF 4: Aliasing Alias expansion is done on delivery. All common kinds of

aliases in the global aliases file are supported. So called .forward aliasing is

not supported, but this is less common and seldom used.

RF 5: Route management Querying the name of the active route is done on
delivery. Headers can get rewritten a second time then. This part does provide

all the functionality required.

RF 6: Authentication Static authentication, based on IP addresses, can be
achieved with Venema’s TCP Wrapper [Ven92], by editing the hosts.allow andhosts.deny files. This is only relevant to authenticate hosts that try to submit

mail into the system. Dynamic (secret-based) SMTP authentication is already
supported in form of SMTP-AUTH and SMTP-after-POP, but only for outgoing

connections. For incoming connections only address-based authentication is
supported.

RF 7: Encryption Similar is the situation for encryption which is also only

available for outgoing channels; here a tunnel application, like openssl, is
needed. A secure tunnel can be created to send mail trough. State-of-the-art,

however, is using STARTTLS, but this is not supported. For incoming channels,

no encryption is available. The only possible setup to provide encryption of
incoming channels is using an application like stunnel to crypt between the

secure connection to the remote host and the plain connection to the MTA. Un-
fortunately, this suffers from the problem explained on page 41 in figure 4.2.

Anyway, it would still be no STARTTLS support.

CHAPTER 4. MASQMAIL’S PRESENT AND FUTURE 48

RF 8: Spam handling masqmail does not provide special support for spam

filtering. Spam prevention by not accepting spam during the SMTP dialog

is not possible at all. Spam filtering is only possible by using two masqmail
instances with an external spam filter in between. The mail flow is from

the receiving MTA instance, which accepts mail, to the filter application that
processes and possible modifies it, to the second MTA which is responsible

for further delivery of the mail. This is a concept that works in general, and

it is good to separate different work with clear interfaces. But the need of
two instances of the same MTA, with doubled setup, makes it rather a work-

around. Better is to have this data flow respected in the MTA design, like it
was done in postfix. Anyway, the more important part of spam handling, for

sure, is done during the SMTP dialog by completely refusing unwanted mail.

RF 9: Malware handling For malware handling applies nearly the same as

for spam handling, except that all checks are done after mail is accepted. The
possible setup is the same with the two MTA instances and the filter in between.

masqmail does support such a setup, but not in a nice way.

RF 10: Archiving There is currently no way for archiving every message that
does through masqmail.

RG 1: Security masqmail’s current security is bad. However, it seems accept-

able for using masqmail on workstations and private networks, if the environ-
ment is trustable and masqmail is protected against remote attacks. In envi-

ronments where untrusted components or persons have access to masqmail, its

security is too low. Its author states that masqmail “is not designed to” such
usage [10]. This is a clear indicator for being careful. Issues like high memory

consumption, low performance, and denial of service attacks—things not re-
garded by design—may cause serious problems. In any way, a security report

that confirms masqmail’s security level is missing.

masqmail uses conditional compilation to exclude unneeded functionality from

the executable at compile time. Excluding code means excluding all bugs and

weaknesses within this code, too. Excluding unused code is a good concept
to improve security.

RG 2: Reliability Its reliability is also not good enough. Situations where

only one part of a sent message was removed from the queue and the other
part remained as garbage, showed off [11]. Problems with large mail messages

in conjunction with small bandwidth were also reported [16]. Fortunately, lost
email was no big problem yet, but Kurth warns:

There may still be serious bugs in [masqmail], so mail might get lost. But

in the nearly two years of its existence so far there was only one time a

bug which caused mail retrieved via pop3 to be lost in rare circumstances.

[10]

CHAPTER 4. MASQMAIL’S PRESENT AND FUTURE 49

In summary: Current reliability needs to be improved. Implementing a state

machine can help here.

RG 3: Robustness The logging behavior of masqmail is good, although it does
not cover the whole code. For example, if the queue directory is world write-

able by accident (or as action of an intruder), any user can remove messages

from the queue or replace them with own ones. masqmail does not even write a
debug message in this case. The origin of this problem, however, is masqmail’s

trust in its environment.

RG 4: Extendability masqmail’s extendability is very poor. This is a general
problem of monolithic software, but can though be provided with high effort.

exim is an example for good extendability in a monolithic program.

RG 5: Maintainability The maintainability of masqmail is equivalent to other
software of similar kind. Missing modularity and therefore more complexity

makes the maintainer’s work harder. Conditional compilation might be good

for security, but ifdef s scattered throughout the source code is a pain for main-
tenance. In summary is masqmail’s maintainability bearable, like in average

Free Software projects.

RG 6: Testability The testability suffers from missing modularity, too. Test-
ing program parts is hard to do. Nevertheless, it is done by compiling parts

of the source to two special test programs: One tests reading input from a

socket, the other tests constructing messages and sending it directly. Neither
is designed for automated testing of source parts, they are rather to help the

programmer during development.

Two additional scripts exist to send a set of mails to different kinds of recipi-

ents. They can be used for automated testing, but both check only the function
of the whole system, not its parts.

RG 7: Performance The performance—efficiency—of masqmail is good enough

for its target field of operation, where this is a minor goal.

RG 8: Availability This applies equal to availability. Hence no further work
needs to be done her.

RG 9: Portability The code’s portability is good with view on Unix-like op-

eration systems. At least Debian, Red Hat, SUSE, Slackware, FreeBSD, OpenBSD,

and NetBSD are reported to be able to compile and run masqmail [10]. Spe-
cial requirements for the underlying file system are not known. Thus, the

portability is already good.

CHAPTER 4. MASQMAIL’S PRESENT AND FUTURE 50

Requirement Importance Pending work Focus

RF 1: In/out channels ++ - +

RF 2: Mail queuing ++ - +

RF 3: Header sanitizing 0 - -
RF 4: Aliasing 0 - -

RF 5: Route management + - 0

RF 6: Authentication ++ + +++

RF 7: Encryption ++ + +++

RF 8: Spam handling + ++ +++
RF 9: Malware handling - + 0

RF 10: Archiving - + 0

RG 1: Security ++ + +++
RG 2: Reliability ++ + +++

RG 3: Robustness + + ++

RG 4: Extendability + ++ +++
RG 5: Maintainability + 0 +

RG 6: Testability 0 0 0

RG 7: Performance -- - ---

RG 8: Availability - - --

RG 9: Portability - -- ---
RG 10: Usability + -- -

Table 4.1: Importance of and pending work for requirements

RG 10: Usability The usability is very good, from the administrator’s point

of view. masqmail was developed to suite a specific, limited job—its configu-
ration does perfect match. The user’s view does not reach to the MTA, as it is

hidden behind the MUA. Configuration could be eased even more by provid-
ing configuration generators that enable masqmail to be used right “out of the

box” after running one of several configuration scripts for common setups.

This would improve masqmail’s usability for not technical educated people.

4.4 Work to do

After the requirements for modern MTAs were identified in section 4.2 and

masqmail’s features were compared against them in section 4.3, here the pend-

ing work is identified. Table 4.1 lists all requirements with importance and the
work that is needed to achieve them. The column “Focus” shows the attention

a work task should get. The focus depends on the task’s importance and the
amount of work it includes.

The importance is ranked from ‘--’ (not important) to ‘++’ (very important).
The pending work is ranked from ‘--’ (nothing) to ‘++’ (very much). Large

work tasks with high importance need to receive much attention, they need

to be in focus. In contrast should small, low importance work tasks receive

CHAPTER 4. MASQMAIL’S PRESENT AND FUTURE 51

few attention. Here the focus for a task is calculated by summing up the

importance and the pending work with equal weight. Normally, tasks with

high focus are the ones of high priority and should be done first.

The functional requirements that receive highest attention are RF 6 (authen-
tication), RF 7 (encryption), and RF 8 (spam handling). Of the non-functional

requirements, RG 1 (security), RG 2 (reliability), and RG 4 (extendability), rank
highest.

These tasks are presented in more detail in a to-do list, now. The list is sorted

by focus and then by importance.

TODO 1: Encryption (RF 7)

Encryption is chosen for number one as it is essential to provide privacy.
Using STARTTLS for encryption is definitely needed and should be added first;

encrypted data transfer is hardly possible without support for it.

TODO 2: Authentication (RF 6)

Authentication of incoming SMTP connections is also highly needed and should
be added second. It is important to restrict access and to prevent relaying.

For workstations and local networks, this has only medium importance and

address-based authentication is sufficient in most times. But secret-based au-
thentication is mandatory to receive mail from the Internet. Additionally it is

a guard against spam.

TODO 3: Security (RG 1)

masqmail’s security is bad, thus the program is forced into a limited field of
operation. This field of operation even shrinks as security becomes more im-

portant and networking and interaction increases. Secure and trusted envi-

ronment become rare, thus improving security is an important thing to do.
The focus should be on adding compartments to split masqmail into sepa-

rate modules. (See section 4.2.3.) Furthermore, masqmail’s security should be
tested throughout to get a definitive view how good it really is and where the

weak spots are.

TODO 4: Reliability (RG 2)

Reliability is also to improve. It is a key quality property for an MTA, and
not good enough in masqmail. Reliability is strong related to the queue, thus

improvements there are favorable. Applying ideas of crash-only software [CF03]

will be a good step. Candea and Fox see in killing the process the best way
to stop a running program. Doing so inevitably demands for good reliability

of the queue, and the start up process inevitably demands for good recovery.
Those critical situations for reliability are nothing special anymore, they are

common. Hence they are regularly tested and will definitely work.

CHAPTER 4. MASQMAIL’S PRESENT AND FUTURE 52

TODO 5: Spam handling (RF 8)

As authentication can be a guard against spam, filter facilities have lower
priority. But basic spam filtering and interfaces for external tools should be

implemented in future. Configuration guides for a setup of two masqmail

instances with a spam scanner in between should be written. And at least a
basic kind of spam prevention during the SMTP dialog should be implemented.

TODO 6: Extendability (RG 4)

masqmail lacks an interface to plug in modules with additional functionality.
There exists no add-on or module system. The code is only separated by

function into various source files. Some functional parts can be included or

excluded by conditional compilation. But the ifdef s are scattered through all
the code. This situation needs to be improved by collecting related function

into single places that interact through clear interfaces with other parts. Also
should these interfaces allow efficient adding of further functionality.

4.5 Ways for further development

Knowing what needs to be done is only one part, the other is deciding how to

do it by focusing on a global development strategy.

4.5.1 Possibilities

Further development of software can always go three different ways:

1. Improve the current code base. (S 1)

2. Add wrappers or interposition filters. (S 2)

3. Redesign the software from scratch and rebuild it. (S 3)

The first two strategies base on the available source code and can be applied

in combination. The third strategy splits from the old code base and starts

over again. Wrappers and interposition filters would be outright included
into a new architecture; they are a subset of a new design. Of course, parts of

existing code can be used in a new design if appropriate.

The requirements are now regarded, each on its own, and are linked to the
development strategy that is preferred to reach each specific requirement. If

some requirement is well achievable by using different strategies then it is

linked to all of them. Implementing encryption (TODO 1) and authentication
(TODO 2), for example, are limited to a narrow region in the code. Such features

are addable to the current code base without much problem. In contrast can
quality properties like reliability (TODO 4), extendability (TODO 6), and main-

tainability hardly be added to code afterwards—if at all. Security (TODO 3) is

CHAPTER 4. MASQMAIL’S PRESENT AND FUTURE 53

Requirement Focus S 1 S 2 S 3

RF 7: Encryption (TODO 1) +++ x

RF 6: Authentication (TODO 2) +++ x

RG 1: Security (TODO 3) +++ x x
RG 2: Reliability (TODO 4) +++ x

RF 8: Spam handling (TODO 5) +++ x x x
RG 4: Extendability (TODO 6) +++ x

RG 3: Robustness ++ x

RF 1: In/out channels + x x x

RF 2: Mail queueing + x

RG 5: Maintainability + x

RF 5: Route management 0 x

RF 9: Malware handling 0 x x x

RF 10: Archiving 0 x x
RG 6: Testability 0 x

RF 3: Header sanitizing - x

RF 4: Aliasing - x
RG 10: Usability - x

RG 8: Availability -- x

RG 7: Performance --- x

RG 9: Portability --- x

Score (Sum of ‘+’) 23 9 7 17

Table 4.2: Development strategies and their suitability for requirements

improvable in a new design, of course, but also with wrappers or interposition

filters.

This linking of requirements to the strategies is shown in table 4.2. The re-

quirements are ordered by their focus.

Next, the best strategy for further development needs to be discovered. There-

fore a score for each strategy is obtained by summing up the focus points of
each requirement for which a strategy is preferred. Only positive focus points

are regarded, with each plus symbol counting one. Requirements with neg-
ative focus are not regarded because they are already or nearly reached; the

view here is on outstanding work.

Strategy 1 (Improve current code) has a score of 9 points. Strategy 2 (Wrappers

and interposition filters) has a score of 7 points. Strategy 3 (A new design)

scores on top with 17 points. S 1 and S 2 can be used in combination; the
combined score is 13 points. Thus strategy 3 ranges first, followed by the

combination of strategy 1 and 2.

This leads to the conclusion that S 3 (A new design) is probably the best strat-

egy for further development.

But this result respects only the view on requirements and their relevance.

Other factors like development effort and risks are important to think about,

CHAPTER 4. MASQMAIL’S PRESENT AND FUTURE 54

too. These issues are discussed in the following sections, comparing S 3

against the combination S 1+2.

4.5.2 Discussion

Quality improvements

Most quality properties can hardly be added afterwards. Hence, if reliability,

extendability, or maintainability shall be improved, a redesign of masqmail is
the best way to take. The wish to improve quality, inevitably point towards

a modular architecture. Modularity with internal and external interfaces is
highly preferred from the architectural point of view (see section 4.2.3). The

need for further features, especially ones that require changes in masqmail’s

structure, support the decision for a new design, too. Hence a rewrite is fa-
vored if masqmail should become a modern MTA with good quality properties.

Security

Similar is the situation for security. Security comes from good design, explain
Graff and van Wyk:

Good design is the sword and shield of the security-conscious developer.

Sound design defends your application from subversion or misuse, pro-

tecting your network and the information on it from internal and external

attacks alike. It also provides a safe foundation for future extensions and

maintenance of the software. [GvW03, page 55]

They also suggest to add wrappers and interposition filters around applica-
tions, but more as repair techniques if it is not possible to design security into

a software the first way [GvW03, pages 71–72].

Hafiz adds: “The major idea is that security cannot be retrofitted into an

architecture.” [Haf05, page 64, (emphasis added)].

Effort estimation

Although a strategy might lead to the best result, one may choose another
one if the required effort is too high. The effort for a redesign and rebuild is

estimated now.

Wheeler’s program sloccount calculates following estimations for masqmail’s

code base as of version 0.2.21 (excluding library code):Total Physi
al Sour
e Lines of Code (SLOC) = 9,041Development Effort Estimate, Person-Years (Person-Months) = 2.02 (24.22)(Basi
 COCOMO model, Person-Months = 2.4 * (KSLOC**1.05))S
hedule Estimate, Years (Months) = 0.70 (8.39)(Basi
 COCOMO model, Months = 2.5 * (person-months**0.38))

CHAPTER 4. MASQMAIL’S PRESENT AND FUTURE 55Estimated Average Number of Developers (Effort/S
hedule) = 2.89Total Estimated Cost to Develop = $ 272,690(average salary = $56,286/year, overhead = 2.40).SLOCCount, Copyright (C) 2001-2004 David A. Wheeler
The development costs in money are not relevant for a Free Software project
with volunteer developers, but the development time is. About 24 man-

months are estimated. The current code base was written almost completely
by Oliver Kurth within four years in his spare time. This means he needed

around twice as much time. Of course, he programmed as a volunteer devel-

oper not as an employee with eight work-hours per day.

Given the assumptions that (1) an equal amount of code needs to be produced

for a new designed masqmail, (2) a third of the existing code can be reused plus
concepts and knowledge, and (3) development speed is like Kurth’s, then it

would take between two and three years for one programmer to produce a

redesigned new masqmail with the same features that masqmail now has. Less
time would be needed if a simpler architecture allows faster development,

better testing, and less bugs. Of course, more developers would speed it up,
too.

Risks

The gained result of a new design might still outweigh the development effort.
But risks are something more to consider.

A redesign and rewrite of software from scratch is hard. It takes time to design
a new architecture, which then must prove that it is as good as expected. As

well is much time and work needed to implement the design, test it, fix bugs,

and so on. If flaws in the design appear during prototype implementation, it
is necessary to start again.

Such a redesign can fail at many points and it is long time unclear if the
result is really better than the code that already exists. Even if the new code

is working like expected, it is still not matured.

One thing is clear: Doing a redesign and rebuild is a risky decision.

Existing code is precious

If a new design needs much effort and additionally is a risk, what about the
existing code base then?

Adding new functionality to an existing code base seems to be a secure and

cheap strategy. The existing code is known to work and features can often
be added in small increments. Risks like wasted effort if a new design fails

are hardly existent, and the faults in the current design are already made and
most probably fixed.

Functionality that is hard to add incrementally into the application, like sup-
port for new protocols, may be addable to the outside. masqmail can be se-

cured to a huge amount by guarding it with wrappers that block attackers

CHAPTER 4. MASQMAIL’S PRESENT AND FUTURE 56

[GvW03, page 71]. Spam and malware scanners can be included by running

two instances of masqmail. All those methods base on the current code which

they can indirectly improve.

The required effort is probably under one third of a new design and work

directly shows results. These are strong arguments against a new design.

Repairing

Besides these advantages of existing code, one must not forget that further

work on it is often repair work. Small bug fixes are not the problem, but
adding something for which the software originally was not designed, will

cause problems. Such work often destroys the clear concepts of the software,

especially in interweaved monolithic code.

Doug McIlroy, a person with important influence on Unix especially by in-

venting the Unix pipe, demands: “To do a new job, build afresh rather than
complicate old programs by adding new features.” [M+78].

Repair strategies are useful, but only in the short-time view and in times of

trouble. If the future is bright, however, one does best by investing into a

software. As shown in section 2.3, the future for MTAs is bright. This means it
is time to invest into a redesign with the intention to build up a more modern

product.

In the author’s view is masqmail already needing this redesign since about

2003 when the old design was still quite suitable . . . it already delayed too
long.

Anyway, further development on base of current code needs to improve the
quality properties, too. Some quality requirements can be satisfied by adding

wrappers or interposition filters to the outside. For those is the develop-

ment effort approximately equal to a solution with a new design. But for
adding quality requirements like extendability or maintainability which affect

the source code throughout, the effort does increase with exponential rate as
development proceeds. In case these properties get not improved, develop-

ment will likely come to a dead end sooner or later.

A guard against dead ends

A new design does protect against such dead ends.

Changing requirements are one possible dead end if the software does not

evolve with them. A famous example is sendmail; it had an almost monopoly
for a long time. But when security became important, sendmail was only re-

paired instead of the problem sources—its insecure design—would have been

removed. Thus security problems reappeared and over the years sendmail’s
market share shrank as more secure MTAs became available. sendmail’s reac-

tion to the new requirements, in form of sendmail X and MeTA1, came much
to late—the users already switched to other MTAs.

CHAPTER 4. MASQMAIL’S PRESENT AND FUTURE 57

Redesigning a software as requirements change helps keeping it alive.

The knowledge of Heraclitus, a Greek philosopher, shall be an inspiration:
“Nothing endures but change.”

Another danger is the dead end of complexity which is likely to appear by
constant work on the same code base. It is even more likely if the code base

has a monolithic architecture. A good example for simplicity is qmail which
consists of small independent modules, each with only about one thousand

lines of code. Such simple code makes it obvious to understand what it does.

The suckless project [8] for example advertises such a philosophy of small
and simple software by following the thoughts of the Unix inventors [KP84]

[KP99]. Simple, small, and clear code avoids complexity and is thus also a

strong prerequisite for security.

Modularity

The avoidance of dead ends is essential for further development on current

code, too. Hence it is mandatory to refactor the existing code base sooner or
later. Most important is the intention to modularize it, as modularity improves

many quality properties, eases further development, and essentially improves

security.

One example how modular structure makes it easy to add further function-

ality is described by Sill: He says that integrating the amavis filter frame-
work into the qmail system can be done by simply renaming the qmail-queue
module to qmail-queue-real and then renaming the amavis executable toqmail-queue [Sil02, section 12.7.1]. Nothing more in the qmail system needs

to be changed. This is a very admirable ability which is only possible in a

modular system that consists of independent executables.

This thesis showed several times that modularity is a key property for good

software design. Modularity can hardly be retrofitted into software, hence
development on base of current code will need a throughout restructuring

too, to modularize the source code. Thus a new design is similar to such a
throughout refactoring, except the dependence on current code.

Function versus quality

Remarkable is the distribution of functional and non-functional requirements

to the strategies. The strategies for current code (S 1+2) have a functional to
non-functional ratio of 10 to 3. The new design strategy (S 3) has a ratio of 5

to 12.

This classifies current code to be better suited for adding functionality, and a

new design to be better suited for quality improvements. Both strategies need
to improve function as well as quality, however, the focus of the strategy is

determined by this difference.

CHAPTER 4. MASQMAIL’S PRESENT AND FUTURE 58

Easier work is likely to be done earlier in Free Software projects than hard

work. Thus, by choosing S 1+2 volunteer developers tend to implement func-

tion first and delay quality improvements, no matter what the suggested order
of the work tasks is. S 3, in contrast, would benefit early quality improvements

and later function improvements. This is real-life experience from Free Soft-
ware development.

Break Even

It is important to keep the time dimension in mind. This includes the separa-

tion into a short-time and a long-time view. The short-time view shall cover
between two and four years, here. The long-time view is the following time.

In the short-time view, the effort for improving the existing code is much
smaller than the effort for a new design plus improvements. But to have

similar quality properties at the end of the short-time frame, a version that is
based on current code will probably require nearly as much effort as a new

designed version will take. For all further development afterwards, the new

design will scale well while the old code will require exponential more work.

Break Even is the point in time when a new design is better than improve-
ments of the old code for the first time. From this point on, the new design

will be the better solution.

In the long-time view, a restructuring for modularity is necessary anyway to

keep the maintaining effort bearable. The question is, when the restructuring
should be done: Right at the start in a new design, or later as restructuring

work.

The problem with “good enough”

The decision for later restructuring is problematic. Functionality is often more
wanted than quality, thus more function is preferred over better quality, as

quality is still “good enough”. But it might be still “good enough” the next
time, and the time after that one, and so on.

Quality improvement is no popular work, but it is required to avoid dead
ends. As more code increases the work that needs to be done for quality

and modularity improvements, it is better to do these improvements early.

Afterwards, all further development will profit from it.

If some design is bad, it should get replaced by a sane solution.

Doug McIlroy gives valuable advice for these situations: “Don’t hesitate to

throw away the clumsy parts and rebuild them.” [M+78].

Though, making such a cut is hard, especially if the bad design is still . . .

“good enough”.

CHAPTER 4. MASQMAIL’S PRESENT AND FUTURE 59

Good software, good feelings

One last argument shall be added. This one is more common to Free Software

but can also be found in non-free software.

Free Software “sells” if it has a good user base. For example: Although qmail

is somehow outdated and its author has not released any new version since

about ten years, qmail still has a very strong user base and community.

Good concepts, sound design, and a sane philosophy gives users good feel-

ings for the software and faith in it. They become interested in using it and
to contribute. In contrast do constant repair work and reappearance of weak-

nesses leave a bad feeling.

The motivation of most volunteer developers is their wish to do good work
with the goal to create good software. Projects that follow admirable plans

towards a good product will motivate volunteers to help. More helpers can get
the 2,5 man-years for a new design in less absolute time done. Additionally is

a good developers base the best start for a good user base, and users define a

software’s value.

4.6 Result

This chapter identified the requirements for a modern and secure masqmail,
and the outstanding work to achieve them. Their importance and the required

work for them lead to a focus ranking, which resulted in an ordered list of
pending work tasks. Afterwards possible development strategies to control

the work process were compared and discussed.

Strategy 3 (A new design) is slightly preferred over the combination of strat-
egy 1 (Improve existing code) and 2 (Add wrappers and interposition filters),

from the requirement’s point of view.

The discussion afterwards did generally support the new design strategy. But

some arguments stood against it. These were:

1. The development time and effort

2. The time delay until new features can be added

3. The risk of failure

The first two arguments are only relevant for the short-time view, because

both will become support arguments for the new design, once the Break Even
point is reached.

The third argument, the risk, remains. There are risks in every investment.
Taking no risks means remaining the same, which eventually means, drifting

towards a dead end in a world that does change.

With respect to the current situation, the suggested further development plan

for masqmail is split into a short-time plan and a long-time plan:

CHAPTER 4. MASQMAIL’S PRESENT AND FUTURE 60

1. The short-time plan: Add the most needed features, namely encryption,

authentication, and security wrappers, to the current code base.

2. The long-time plan: Design a new architecture that satisfies the modern

requirements, especially the quality requirements.

The background thought for this development plan is to first do the most

needed stuff on the existing code to keep it usable. This satisfies the urgent
needs and removes the time pressure from the development of the new design.

After this is done, a new designed masqmail should be developed from scratch.
This is the work for the future. It shall, after it is usable and throughout tested,

supersede the old masqmail.

The basics of this development idea can be described as: Recurrent develop-

ment of a new design from scratch, while the old version is still in use and

gets repaired.

Hence a modern design will inherit an old one in periodic intervals. This is a

very future-proof concept that combines the best of short-term and long-term
planning. The price to pay is only the increased work, which gets covered by

volunteers that want to do it.

Chapter 5

Improvement plans

The last chapter came to the result that further development is best done in a
double-strategy: First the existing code base should be improved to satisfy the

most important needs in order to make it usable for some more time. Then

masqmail should get redesigned from scratch and rebuilt to gain a secure and
modern MTA architecture for the future.

This chapter finally describes approaches and techniques for the work on the
current code base, and it introduces ideas and plans for a new, modern MTA

design which will become the next generation of masqmail.

The first part of the chapter covers the short-time goals that base on the current

code. The second part deals with the long-time goal—the redesign.

5.1 Based on current code

The three most important work tasks are implementable by improving the
current code or by adding wrappers or interposition filters. The following

sections describe solution approaches to do that work.

5.1.1 Encryption

Encryption (TODO 1) should be the first functionality to be added to the current
code. The requirement was already discussed on page 40. As explained there,

STARTTLS encryption—defined in RFC 2487—should be added to masqmail.

This work requires changes mainly in three source files: smtp_in.
, smtp_out.
, and
onf.
.

The first file includes the functionality for the SMTP server. It needs to offer

STARTTLS support to clients and needs to initiate the encryption when the client

requests it. Additionally, the server should be able to insist on encryption
before it accepts any message

61

CHAPTER 5. IMPROVEMENT PLANS 62

The second file includes the functionality for the SMTP client. It should start

the encryption by issuing the STARTTLS keyword if the server supports it. It

should be possible to send messages over encrypted channels only.

The third file controls the configuration files. New configuration options need

to be added. The encryption policy for incoming connections needs to be
defined. Three choices seem necessary: no encryption, offer encryption, insist

on encryption. The encryption policy for outgoing connections should be
part of each route setup. The options are the same: never encrypt, encrypt if

possible, insist on encryption.

Dependencies

STARTTLS uses TLS encryption which is based on certificates. Thus the MTA

needs its own certificate. This should be generated during installation. A third

party application like openssl should be taken for this job. The encryption
itself should also be done using an available library. openssl or a substitute

like gnutls does then become a dependency for masqmail. gnutls seems to be

the better choice because the openssl license is incompatible to the GPL, under
which masqmail and gnutls are covered.

User definable paths to masqmail’s secret key, masqmail’s certificate, and the
public certificates of trusted Certificate Authorities (short: CAs) are also nice to

have.

Existing code

Frederik Vermeulen wrote an encryption patch for qmail which adds START-

TLS support [31]. This patch includes about 500 lines of code.

Adding this code in a similar form to masqmail will be fairly easy. It will save

a lot of work as it is not necessary to write the code completely from scratch.

5.1.2 Authentication

Authentication (TODO 2) is the second function to be added. It is important to

restrict the access to masqmail, especially for mail relay. The requirements for
authentication where identified on page 39.

Static access restriction, based on the IP address is already possible by using
TCP Wrapper. This makes it easy to refuse all connections from outside the

local network for example, which is a good prevention against being an open
relay. More detailed static restrictions, like splitting between mail for users on

the system and mail for relay, should not be added to the current code. This

is a concern for the new design.

CHAPTER 5. IMPROVEMENT PLANS 63

One of the dynamic methods

Of the three dynamic, secret based, authentication methods (SMTP-after-POP,

SMTP authentication, and certificates) the first one drops out as it requires a
POP server running on the same or a trusted host. POP servers are rare on

workstations and home servers do also not regularly include them. Thus it is

no option for masqmail.

Authentication based on certificates does suffer from the certificate infrastruc-
ture that is required. Although certificates are already used for encryption, its

management overhead prevented wide spread usage for authentication.

SMTP authentication (also referred to as SMTP-AUTH) support is easiest attained

by using a Simple Authentication and Security Layer (short: SASL) implementa-

tion. Dent sees in SASL the best solution for dynamic authentication of users:

None of these [authentication methods] is an ideal solution. They require

additional code compiled into your existing daemons that may then re-

quire special write access to system files. They also require additional

work for busy system administrators. If you cannot use any of the nonau-

thenticating alternatives mentioned earlier, or your business requirements

demand that all of your users’ mail pass through your system no matter

where they are on the Internet, SASL is probably the solution that offers

the most reliable and scalable method to authenticate users. [Den04,

page 44]

These days SMTP-AUTH—defined in RFC 2554—is supported by almost all email

clients. If encryption is used then even insecure authentication methods like

PLAIN and LOGIN become secure.

Simple Authentication and Security Layer

masqmail best uses an available SASL library. Cyrus SASL is used by postfix and

sendmail. It is a complete framework that makes use of existing authentication
concepts like the passwd file or PAM. As advantage it can be included in exist-

ing user data bases. gsasl is an alternative. It comes as a library which helps

with the decision for a method and with generating the appropriate dialog
data; the actual transmission of the data and the authentication against some

database is left open to the programmer. gsasl is used, for instance, by msmtp.

It seems best to give both concepts a try and decide then which one to use.

Currently, outgoing connections already feature SMTP-AUTH but only in a
hand-coded way. It is to decide whether this should remains as it is or should

get replaced by the SASL approach that will be used for incoming connections.

The decision should be influenced by the estimated time until the new design
is usable.

Authentication needs code changes in the same places as encryption. The
relevant code files are smtp_in.
, smtp_out.
, and
onf.
.

CHAPTER 5. IMPROVEMENT PLANS 64

The server code, to authenticate clients, must be added to smtp_in.
 and

the configuration options to
onf.
. Several configuration options should be

provided: the authentication policy (no authentication, offer authentication,
insist on authentication), the authentication backend (if several are supported),

an option to refuse plain text methods (PLAIN and LOGIN), and one to require
encryption before authentication.

If the authentication code for outgoing connects shall be changed too, it must
be done in smtp_out.
. The configuration options are already present.

Authentication backend

For a small MTA like masqmail, it seems preferable to store the login data in

a text file under masqmail’s control. This is the most simple choice for many
usage scenarios. But using a central authentication facility has advantages in

larger setups, too. Cyrus SASL supports both, so there is no problem. If gsasl
is chosen, it seems best to start with an authentication file under masqmail’s

control.

5.1.3 Security

Improvements to masqmail’s security (TODO 3) are an important requirement

and are the third task to be worked on. Retrofitting security into masqmail
is not or hardly possible as it was explained in section 4.5.2. But adding

wrappers and interposition filters can be a large step towards security.

Mail security layers

At first mail security layers like smap come to mind. The market share analysis
in section 3.2.1 identified such software. Mail security layers are interposition

filters that are located between the untrusted network and the MTA. They ac-
cept mail in replacement for the MTA in order to separate the MTA from the

untrusted network. Thus they are proxies.

The work smap does is described in [Cab01]: smap accepts messages as proxy

for the MTA and puts it into a queue. smapd a brother program runs as daemon

and watches for new messages in this queue which it submits into the MTA

then.

Because the MTA does not listen for connections from outside now, it is not
directly vulnerable. Unfortunately, the MTA can not react on relaying and

spam by itself anymore because it has no direct connection to the mail sender.
This job needs to be covered by the proxy now. Similar is the situation for

encryption and authentication. However, care must be taken that the proxy

stays small and simple as its own security will suffer otherwise.

The advantage of mail security layers is that the MTA itself needs not to bother
much with untrusted environments. The proxy cares for this.

CHAPTER 5. IMPROVEMENT PLANS 65

25
SMTP

from remote
SMTP

proxy
SMTP

X
SMTP

masqmail

SMTP SMTP
to remotepipe

mailboxstdinsendmail
command

Figure 5.1: A setup with a proxy

smap is non-free software and thus no general choice for masqmail. A way

to achieve a similar setup is to copy masqmail and strip one copy to the bare
minimum of what is needed for the proxy job. setuid could be removed, and

root privilege too if inetd is used. This hardens the proxy instance.

Mail from outside would then come through the proxy into the system. Mail

from the local host and from the local network could be directly accepted by
the normal masqmail, if those locations are considered trusted. But it seems

better to have them use the proxy, too, or maybe a second proxy instance with
different policy.

The here described setup comes close to the structure of the incoming chan-

nels in the new design which is described in section 5.2. This shows the

capabilities of the here chosen approach.

A concrete setup

A stripped down proxy needs to be created. It should only be able to re-

ceive mail via SMTP, encrypt the communication, authenticate clients, and send
mail out via SMTP to an internal socket (named “X” in the figure). This is a

straight forward task. The normal masqmail instance runs on the system, too.

It takes input from stdin (when the sendmail command is invoked) and via
SMTP where it listens on an internal socket (named “X” in the figure). Outgo-

ing mail is handled without difference to a regular setup. Figure 5.1 depicts
the setup.

Spam and malware handling

The presented setup is the same as the one with two MTA instances and a

scanner application in between, which was suggested to add spam and mal-
ware scanner afterwards to an MTA. This is a fortunate coincidence, because a

scanner like amavis can simply be put in replace for the internal socket “X”.

5.2 A new design

In chapter 4 the requirements for a modern and secure masqmail were iden-

tified. Now modules that implement the various jobs of an MTA are defined

CHAPTER 5. IMPROVEMENT PLANS 66

and plugged together to create a new masqmail. The architecture is inspired

by existing MTAs and driven by the identified requirements.

One wise experience was kept in mind during the design: “Many times in life,

getting off to the right start makes all the difference.” [GvW03, page 32].

5.2.1 Design decisions

This section describes and discusses architectural decision that were made for

the new design. The functional requirements are only referenced, as they were
already discussed in chapter 4.

A number of major design ideas lead the development of the new architecture:

1. Throughout compartmentalization.

2. Free the internal system from the in and out channels. Provide interfaces

to add arbitrary protocol handlers afterwards.

3. Have a single point for scanning where all mail goes through.

4. Concentrate on the mail transfer job. Use specialized external programs

for other jobs.

5. Keep it simple, clear, and general.

Incoming channels

The functional requirements for incoming channels were already discussed
as RF 1 on page 37. Two required incoming channels were identified: thesendmail command for local mail submission and the SMTP daemon for re-

mote connections.

A bit different is the structure of sendmail X at that point: Locally submitted
messages go also to the SMTP daemon, which is the only connection to the mail

queue. Finch proposes a similar approach [Fin06b]: He wants the sendmail
command to be a simple SMTP client that contacts the SMTP daemon of the MTA,
like it is done by connections from remote. The advantage here is to have one

single module where all SMTP dialog with submitters is done. Hence one
single point to accept or refuse incoming mail. Additionally does the module

which puts mail into the queue not need to be setuid or setgid, because it is

only invoked from the SMTP daemon. The MTA’s architecture would become
simpler and common tasks are not duplicated in modules that do similar jobs.

But merging the input channels in the SMTP daemon makes the MTA heavily

dependent on SMTP. To qmail and postfix new protocol handlers may be added
without change in other parts of the system. The SMTP modules can even get

removed if it is not needed. It is better to have a larger number of independent

CHAPTER 5. IMPROVEMENT PLANS 67

modules if each one is simpler then. The need to implement SMTP clients in

every module for internal communication makes them more complicated.

With the increasing need for new protocols in mind, it seems better to have

single modules for each incoming channel, although this leads to duplicated

acceptance checks. Independent checks in different modules, however, have
the advantage to be able to simply apply different policies. Thus it is possible

to run two SMTP modules that listen on different ports: one accessible from
the Internet which requires authentication, the other one only accessible from

the local network without authentication.

The approach of simple independent modules, one for each incoming channel,

should be taken.

A module which is a POP or IMAP client to import contents of other mailboxes

into the system may be added afterwards as it is desired.

Outgoing channels

Outgoing mail is commonly either sent using SMTP, piped into local com-

mands (for example uu
p), or delivered locally by appending to a mailbox.

The requirements were identified on page 37.

Outgoing channels are similar for qmail, postfix, and sendmail X: All of them

have a module to send mail using SMTP and one for writing into a local mail-
box. Local mail delivery is a job that should have root privilege to be able

to switch to any user in order to write to his mailbox. Modular MTAs do not
require setuid root but the local delivery process (or its parent) should run as

root. root privilege is not a mandatory requirement but any other approach

has some disadvantages thus commonly root privilege is used.

Local mail delivery should not be done by the MTA, but by an MDA instead.

This decision was discussed in section 4.2.1. This means only an outgoing
channel that pipes mail into a local command is required for local delivery.

Other outgoing channels, one for each supported protocol, should be designed
like it was done in other MTAs.

Mail queuing

The mail queue is the central part of an MTA. This fact demands especially for
robustness and reliability as a failure here can lead to mail loss. (See RF 2 on

page 38.)

Common MTAs feature one or more mail queues, they sometimes have effec-

tively several queues within one physical representation.

MTA setups that include content scanning tend to require two separate queues.

To use sendmail in such setups requires two independent instances with one

own queue each. exim can handle it with special router and transport rules but
the data flow gets complicated. Hence an idea is to use two queues (incoming

CHAPTER 5. IMPROVEMENT PLANS 68

and active in postfix’s terminology) and have the content scanning within the

move from the one to the other.

sendmail, exim, qmail, and masqmail all use at least two files to store one mes-

sage in the queue: one file contains the message body, another the envelope

and header information. The one containing the mail body is not modified at
all. postfix takes a different approach in storing queued messages in an inter-

nal format within one file. Finch suggest yet another approach: The whole
queue should be stored in one single file with pointers to separating positions

[Fin06a].

All of the presented MTAs use the file system to hold the queue; none uses

a database to hold it. A database could improve the reliability of the queue

through better persistence. This might be a choice for larger MTAs but is none
for masqmail which should be kept small and simple. A running database sys-

tem does likely require much more resources than masqmail itself does. And
as the queue’s job is more storing data, than running data selection queries, a

database does not gain enough to outweigh its costs.

Hence the choice here is having a directory with simple text files in it. This is

straight forward, simple, clear, and general . . . and thus a good basis for reli-
ability. It is additionally always an advantage if data is stored in the operating

system’s natural form, which is plain text in the Unix’ case.

Robustness of the queue is covered in the next section.

Mail sanitizing

Mail coming into the system may be malformed, lacking headers, or can be

an attempt to exploit the system. Care must be taken.

In postfix, mail is sanitized by the cleanup module, which invokes rewrite. The

position in the message flow is after the message comes from one of the several
incoming channels and before the message is stored into the incoming queue.

cleanup does a complete check to make the mail header complete and valid.

qmail has the principle of “don’t parse” which propagates the avoidance of

parsing as much as possible. The reason is that parsing is a highly complex
task which likely makes code exploitable.

In masqmail’s new design, mail should be stored into the queue without pars-
ing. A scanning module should then parse the message with high care.

Spinellis proposes reliable approaches to do this work [Spi06, pages 17–18];

using a parser generator1 is the best solution here. The parsed data should then
get modified if needed and written into a second queue. This approach has

several advantages. First, the receiving parts of the system are independent
from content, they simply store it into the queue. Second, one single module

does the parsing and generates new messages that contain only valid data.

Third, the sending parts of the system will thus only work on messages that
consist of valid data. Of course, it must be ensured that each message passes

1Stephen C. Johnson’s paper about yacc is a good introduction into parser generators [Joh79].

CHAPTER 5. IMPROVEMENT PLANS 69

through the scanning module, but this is already required for spam and mal-

ware scanning.

The mail body will never get modified, except for removing and adding trans-

fer protocol specific requirements like dot stuffing or special line ending char-

acters. These translations are only done in receiving and sending modules.

Jon Postel’s robustness principle2 should be respected in the scanning mod-
ule. The module should parse the given input in a liberal way and generate

clean output. Raymond’s Rule of Repair3 can be applied, too. But it is impor-

tant to repair only obvious problems, because repairing functionality is likely
a target for attacks.

Aliasing

The functional requirements were identified under RF 4 on page 39. From the

architectural point of view, the main question about aliasing is: Where should
aliases get expanded?

Two facts are important to consider: (1) Addresses that expand to a list of

users lead to more envelopes. (2) Aliases that change the recipient’s domain

part may make the message unsuitable for a specific online route.

Aliasing is often handled by expanding the alias and re-injecting the mail into

the system. Unfortunately, the mail is processed twice then; additionally does
the system have to handle more mail this way. If it is wanted to check the new

recipient address for acceptance and do all processing again, then re-injecting
it is the best choice. But already accepted messages may get rejected in the

second go, though the replacement address was set inside the system. This

seems not to be wanted.

Doing the alias expansion in the scanning module appears to be the best so-

lution. Unfortunately, a second alias expansion must be made on delivery,
because only then is clear which route is used for the message. This compro-

mise should get accepted.

Route management

The online state is only important for the sending modules of the system,
thus it should be queried in the queue-out module which selects ready mes-

sages from the outgoing queue and transfers them to the appropriate sending
module. Route-based aliasing, which was described in the last section, should

be done in the same go.

2“Be liberal in what you accept, and conservative in what you send.”. In this wording in
RFC 1122 and in different wordings in numerous RFCs

3“Repair what you can – but when you must fail, fail noisily and as soon as possible.” [Ray03,
page 18]

CHAPTER 5. IMPROVEMENT PLANS 70

Archiving

The best point to archive copies of every incoming mail is the queue-in module,

respectively the queue-out module for copies of outgoing mail. But the changes
that are made by the receiving modules (adding further headers) and sending

modules (address rewrites) are not respected with this approach.

qmail has the ability to log complete SMTP dialogs. Logging the complete data

transaction into and out of the system is a great feature which should be
implemented into each receiving and sending module. Though, as this will

produce a huge amount of output, it should be disabled by default.

Archiving’s functional requirements were described as RF 10 on page 42.

Authentication and Encryption

The topics were discussed as RF 6 and RF 7 on several places throughout this

thesis remarkable ones are on page 39 and 40.

Authentication should be done within the receiving and sending modules. To

encryption applies the same as to authentication here. Only receiving and
sending modules should come in contact with it.

In order to avoid code duplicates, the actual implementation of both functions
should be provided by a central source, for example a library, which is used

in the various modules.

Spam and malware handling

The two approaches for spam handling were already presented to the reader
in section 4.2.1 as RF 8 and RF 9. Here they are described in more detail:

1. Refusing spam during the SMTP dialog: This is the way it was meant by
the designers of the SMTP protocol. They thought checking the sender’s

and recipient’s mail addresses would be enough, but as they are forge-

able, it is not. More and more complex checks are needed to be done.
Checking needs time, but SMTP dialogs time out if it takes too long. Thus

during the SMTP dialog, only limited time can be used for checking if a
message seems to be spam. The advantage of this approach is that bad

messages can simply get refused—no responsibility for them is taken

and no further system load is added. See RFC 2505 (especially section
1.5) for detail.

2. Checking for spam after the mail was accepted and queued: Here it

is possible to invest more processing time, thus more detailed checks

can be done. But, as responsibility for messages was taken, it is no
choice to simply delete spam mail. Checks for spam do not lead to

sure results, they just indicate the possibility the message is unwanted
mail. Eisentraut lists actions to take after a message is recognized as

probably spam [EW05, pages 18–20]. For mail the MTA is responsible for,

CHAPTER 5. IMPROVEMENT PLANS 71

the only acceptable action is adding further or rewriting existing header

lines. Thus all further work on the spam messages is the same as for

non-spam messages.

Modern MTAs use both techniques in combination. Checks during the SMTP

dialog tend to be implemented in the MTA to make them fast; checks after the

message was queued are often done using external programs (spamassassin is
a well known one). Eisentraut sees the checks during the SMTP dialog to

be essential: “Ganz ohne Analyse während der SMTP-Phase kommt sowieso

kein MTA aus, und es ist eine Frage der Einschätzung, wie weit man diese
Phase belasten möchte.” [EW05, page 25, (translated: “No MTA can go without

analysis during the SMTP phase anyway, but the amount of stress one likes to
put on this phase is left to his discretion.”)]

Checks before a message is accepted, like DNS blacklists and greylisting, need

to be invoked from within the receiving modules. Like for authentication and
encryption, the implementation of this functionality should be provided by a

central source.

All checks on queued messages should be done by pushing the message
through external scanners like spamassassin. The scanning module is the best

place to handle this. Hence this module needs interfaces to external scanners.

Malware scanning is similar to spam scanning of queued messages. The

amavis framework is a popular mail scanning framework that includes all

kinds of malware and also spam scanners; it communicates by using SMTP.

Providing SMTP in and out channels from the scanning module to external

scanner applications is thus a desired goal. Using further instances of the
already available smtp and smtpd modules appears to be the best solution.

The scanning module

A problem, which was probably noticed by the attentive reader, is the lot of

work that was put onto the scanning module. This is not what is desired. Thus
splitting this module into a set of single modules might be necessary.

The decision how to split shall not be discussed here. It is left up to the time

of prototyping, because trying different approaches helps with the decision in
such situations.

5.2.2 The resulting architecture

The result is a symmetric design, featuring the following modules:

1. Any number of receiver modules that handle incoming connections.

2. A module that stores the received mail into a first queue.

3. A central scanning module that takes mail from the first queue, pro-

cesses it in various ways, and puts it afterwards into a second queue.

CHAPTER 5. IMPROVEMENT PLANS 72

smtpd

sendmail

...

queue-in

incoming
queue

scanning
outgoing

queue

queue-out

smtp

pipe

...

external mail scanners

message
pool

Figure 5.2: The new designed architecture for masqmail

4. A module that takes mail out of the second queue and passes it to a

matching transport module.

5. A set of transport modules that transfers the message to the destination.

In other words three main modules (queue-in, scanning, queue-out) are con-

nected by two queues (incoming, outgoing). On each end is a set of modules
to receive or send mail—one for each protocol. The queue includes also a

message pool where the bodies of the queued messages are stored. Figure 5.2
depicts the new designed architecture.

This architecture is heavily influenced by the ones of qmail and postfix. Both

have different incoming channels which merge in the module that puts mail

into the queue; central is the queue (or more of them); and one module takes
mail from the queue and passes it to one of the outgoing channels. But mail

processing is built into the architecture in a more explicit way in this design
than it was done in qmail and postfix.

Special regard was put on addable support for further mail transfer protocols.
Here the design appears to be most similar to qmail, which was designed to

handle multiple protocols.

The modules

Now follows a description of the modules of the new architecture. They are

described in the same order in which a message passes through them.

Receiver modules They are the communication interface between external
senders and the queue-in module. Each protocol needs a corresponding re-

ceiver module to be supported. Most popular is the sendmail module, which

is a command to be called from the local host, and the smtpd module which
usually listens on port 25. Other modules to support other protocols may

be added as needed. Receiving modules that need to listen on ports should
get invoked by inetd, or by Bernstein’s more secure ucspi-tcp. This makes it

possible to run them with least privilege.

CHAPTER 5. IMPROVEMENT PLANS 73

The queue-in module Its job is to store new messages into the queue. When

one of the receiving modules has a new message, it invokes the queue-in mod-

ule which creates a spool file in the incoming queue and a data file in the pool.
The receiver module then sends the envelope, the message header, and the

message body. The queue-in modules writes the first two into the spool file,
the latter one into the pool.

The scanning module It is the central part of the system. It reads spool files

from the incoming queue, works on the data, and writes new spool files to
the outgoing queue. Then the message is removed from the incoming queue.

The main job of this module is the processing of the message. Headers are

fixed and missing ones are added if necessary, aliasing is done, and external
processing of any kind is triggered. The scanning module processes primary

the spool files but may read the mail body from the pool if necessary.

The queue-outmodule This module takes messages from the outgoing queue,
queries information about the online state, and passes the messages to the cor-

rect transport module. Successfully transferred messages are removed from

the outgoing queue. The masqmail specific tasks of the route management are
handled by this module, too.

Transport modules These modules send outgoing mail; they are the inter-

face between queue-out and remote hosts or local commands. The most popu-
lar modules of this kind are the smtp module which acts as an SMTP client and

the pipe module to interface gateways to other systems or networks like FAX

and UUCP. A module for local delivery is not included; masqmail passes this
job to an MDA which gets invoked through the pipe module. (See section 4.2.1

for reasons.)

The queue

The queuing system consists of two queues and a message pool. The queues

store the spool files—in unprocessed form in incoming and in complete and

valid form in outgoing. The pool is the storage of the data files. On disk, the
three parts of the queuing system are represented by three directories within

the queue path.

The representation of queued messages on disk is basically the same as in

current masqmail: One file for the envelope and message header information
(the “spool file”) and a second file for the message body (the “data file”).

The currently used internal structure of the spool files can remain. Following
is a sample spool file from current masqmail. The first part is the envelope and

meta information. The annotations in parenthesis are only added to ease the

understanding. The second part, after the empty line, is the message header.

CHAPTER 5. IMPROVEMENT PLANS 741LGtYh-0ut-00 (ba
kup
opy of the file name)MF:<meillo�dream> (envelope sender)RT: <user�example.org> (envelope re
ipient)PR:lo
al (re
eiving proto
ol)ID:meillo (identity: user or IP address)DS: 18 (data size)TR: 1230462707 (timestamp of re
ipien
e)HD:Re
eived: from meillo by dream with lo
al (masqmail 0.2.21) id1LGtYh-0ut-00 for <user�example.org>; Sun, 28 De
 2008 12:11:47 +0100HD:To: user�example.orgHD:Subje
t: test mailHD:From: <meillo�dream>HD:Date: Sun, 28 De
 2008 12:11:47 +0100HD:Message-ID: <1LGtYh-0ut-00�dream>
The spool file owner’s executable bit shows if a file is ready for further pro-

cessing: The module that writes the file into the queue sets the bit as last
action. Modules that read from the queue can process messages that have the

bit set. This approach is derived from postfix.

The data file is stored into the pool by queue-in; it never gets modified until it

is deleted by queue-out. They consist of data in local default text format.

Inter-module communication

Communication between modules is required to exchange data and status
information. This is also called “Inter-process communication” (short: IPC)

because the modules are independent programs in this case and processes are
programs in execution.

The connections between queue-in and scanning, as well as between scanning
and queue-out, is provided by the queues, only signals might be useful to

trigger runs. Communication between receiver and transport modules and

the outside world is organized by their specific protocol (e.g. SMTP).

Left is only the communication between the receiver modules and queue-in,
and between queue-out and the transport modules. Suggested for this com-

munication is a simple protocol with data exchange through Unix pipes. Fig-

ure 5.3 shows a state diagram for the protocol.

The protocol is described in more detail now:

Timing One dialog consists of exactly three phases: (1) The connection at-

tempt, (2) The envelope and header transfer, and (3) The transfer of the mes-
sage body. The order is always the same. The three phases are all initiated

by the client process. After each phase the server process sends a success or
failure reply. Timeouts for each phase need to be implemented.

CHAPTER 5. IMPROVEMENT PLANS 75

B
connection

attempt
W

0 header
transfer

W
0 body

transfer
W

0
S

1

E

1

E

1

E

B: begin
W: wait for reply
E: error
S: success

Figure 5.3: State diagram of the IPC protocol. (Solid lines indicate client ac-
tions, dashed lines indicate server responses.)

Semantics The connection attempt is simply opening the connection. This
starts the dialog. A positive reply by the server leads to the transfer of the

envelope and the message header. If the server again sends a positive reply,

the message data is transferred. A last server reply ends the dialog.

The client indicates the end of each data transfer with a special terminator

sequence. The appearance of this terminator sequence tells the server process
that the data transfer is complete. The server then needs to send its reply. The

server process takes responsibility for the data in sending a success reply. A
failure reply immediately stops the dialog and resets both client and server to

the state before the connection attempt.

Syntax Data transfer is done by sending plain text data. Line Feed (‘\n’)—
the native line separator on Unix—is used as line separator. The terminator

sequence used to indicate the end of the data transfer is the ASCII null character

(‘\0’). Replies are one-digit numbers with ‘0’ meaning success and any other
number (‘1’–‘9’) indicating failure.

Rights and permissions

The set of system users that is required for qmail seems to be too complex for

masqmail. One system user, like postfix uses, is more appropriate. root privilege
and setuid permission should to be avoided if feasible.

The queue-in module is the part of the system that is most critical about per-

mission. It either needs to run as daemon or be setuid or setgid in order to

avoid a world-writable queue. Ian R. Justman recommends to use setgid in
this situation:

But if all you need to do is post a file into an area which does not have

world writability but does have group writability, and you want account-

ability, the best, and probably easiest, way to accomplish this without the

need for excess code for uid switching (which is tricky to deal with espe-

cially with setuid-to-root programs) is the setgid bit and a group-writable

directory. [Jus99]

Bernstein chose setuid for the qmail-queue module, Venema uses setgid in post-
fix, yet the differences are small. Better than running the module as a daemon

CHAPTER 5. IMPROVEMENT PLANS 76

is each of them. A daemon needs more resources and therefore becomes inef-

ficient on systems with low mail amount, like the ones masqmail will probably

run on. Short running processes are additionally higher obstacles for intrud-
ers, because a process will die soon if an intruder managed to take one over.

The modules scanning and queue-out are candidates for all-time running dae-

mon processes. Alternatively they could be started by cron to do single runs.

Another possibility is to run a master process as daemon which starts and
restarts the system parts. postfix has such a master process, qmail lacks it. The

jobs of a master process can be done by other tools of the operating system

too, thus making a master process abdicable. masqmail does probably better
go without a master process, because it aims to save resources, not to get the

best performance.

A sane permission management is very important for secure software in gen-

eral. The principle of least privilege [SS75, section I.A.3.f], as it is often called,
should be respected. If it is possible to use lower privilege then it should be

done. An example for doing so is the smtpd module. It is a server module
which listens on a port. One way is to start it as root and let it bind to the

port and drop all privilege before it does any other work. But root privilege

is avoidable completely if inetd, or one of its substitutes, listens on the port in-
stead of the smtpd module. inetd will then launch the smtpd module to handle

the connection whenever a connection attempt to the port is made. The smtpd

module needs no privilege at all this way.

Chapter 6

Summary

This thesis is a comprehensive analysis of masqmail. It followed a clear struc-

ture from the present to the future, from the general to the special, and from
problems to requirements to proposed solutions.

In the beginning, reasons why it is worth to revive the development of masq-
mail were given and the problems of the program were identified. Then the

current and future market for electronic communication and email was an-
alyzed. It was showed that email is future-proof and probable trends were

spotted. Afterwards the different types of MTAs were classified and the most

important alternatives to masqmail were presented and compared.

In the second half of the thesis, masqmail was in the focus. The goal to reach

with further development was defined and the requirements were identified.
The existing source code was compared against the requirements to see which

ones are already fulfilled. The pending work tasks were ranked by their focus,
which depends on the importance of the task and the amount of work it

involves.

The possible strategies for controlling further development (improve existing

code or redesign and rewrite) were compared against each other on basis of

the required work. They were additionally discussed with regard to various
other influences. The final decision was a twofold aim: First, improve the

existing code to keep it usable for the next time. Second, design a new version
of masqmail with respect for the modern goals for MTAs that were identified

throughout the thesis.

In the end, more concrete plans for the improvements of the existing code

were made and a suggestion for a new design for masqmail was presented.

The description of this new design left quite a few questions open, however, it
was intended as a discussion with suggested solutions. To cover such a topic

throughout, much more information need to be collected and more detailed
studies of the situations in other MTAs need to be made. This would take at

least a second diploma thesis or a master’s thesis.

77

CHAPTER 6. SUMMARY 78

Outlook

This diploma thesis is intended to be the begin of a long-time effort to revive

masqmail. The next important step is creating a community of people that
are interested in reviving masqmail’s development. Then comes implementing

the identified tasks together with this group of volunteers, and afterwards,

creating the next generation of masqmail.

Like expected for unmaintained software, there are known bugs in masqmail.
Those need to be fixed.

Documentation and “marketing” are also important. Especially end user doc-
umentation is needed and people who help to distribute the knowledge of

masqmail’s existence and its advantages.

masqmail is software with value. This thesis is a first effort to revive it—it shall

not be the last.

Bibliography

[All06] Eric Allman. Sendmail Configuration Files. Sendmail Consortium,
The, 2006. Available on the Internet: http://sendmail.org/m4/readme.html (2009-02-07).

[Bac02] Adam Back. Hashcash – A Denial of Service Counter-Measure. Tech-

nical report, August 2002. On the Internet: http://hash
ash.org/papers/hash
ash.pdf (2009-01-04).

[Ber01] Daniel J. Bernstein. Internet host SMTP server survey. A posting to

the news group comp.mail.misc, October 2001. Available on the
Internet: http://
r.yp.to/surveys/smtpsoftware6.txt (2008-12-11).

[Bla05] Elena Blanco. Open source and the postmaster. On the Inter-
net: http://www.oss-wat
h.a
.uk/resour
es/postmaster.xml (2009-

01-22), August 2005.

[CA97] Bryan Costales and Eric Allman. sendmail. O’Reilly & Associates,
Inc, second edition, 1997. ISBN: 1-56592-222-0.

[Cab01] Jim Cabral. Securing Email Through Proxies: Smap and Stunnel.

Technical report, SANS Institute, July 2001. On the Internet:http://www.sans.org/reading_room/whitepapers/email/se
uring_email_through_proxies_smap_and_stunnel_579 (2009-01-22).

[CF03] George Candea and Armando Fox. Crash-Only Software. In Work-

shop on Hot Topics in Operating Systems, volume 9, 2003. On
the Internet: http://dslab.epfl.
h/pubs/
rashonly/
rashonly.pdf
(2009-02-03).

[Col07] William K. Cole. Blacklists, Blocklists, DNSBL’s, and survival. On

the Internet: http://s

onsult.
om/bill/dnsblhelp.html (2009-01-

10), 2007.

[dBP04] Jonathan de Boyne Pollard. Unix Mail Transport Systems re-

viewed by JdeBP. On the Internet: http://homepages.tes
o.net/~J.deBoynePollard/Reviews/UnixMTSes/ (2008-10-18), 1998–2004.

[Den04] Kyle D. Dent. Postfix: The Definitive Guide. O’Reilly Media, 2004.
ISBN: 0-596-00212-2.

a

[EW05] Peter Eisentraut and Alexander Wirt. Mit Open Source-Tools Spam

und Viren bekämpfen. O’Reilly Verlag, 2005. ISBN: 3-89721-377-X.

(In German language).

[Fin06a] Tony Finch. Spool file logistics. On the Internet: http://fanf.livejournal.
om/65203.html (2009-01-26), September 2006. Part 5

of the series “How not to design an MTA” which is accessable at:http://dotat.at/writing/mta-ar
h. His articles “More about log-

structured queues” and “More log-structured queues” discuss the

idea in more detail.

[Fin06b] Tony Finch. The sendmail command. On the Internet: http://fanf.livejournal.
om/50917.html (2009-01-26), February 2006. Part 1 of

the series “How not to design an MTA” which is accessable at: http://dotat.at/writing/mta-ar
h.

[Fre98] Jesse Freund. Hype List. Wired Magazine, June 1998. Also

available online at: http://www.wired.
om/wired/ar
hive/6.06/hypelist.html (2008-11-26).

[FSF91] The Free Software Foundation. The GNU General Public Li-
cense, version 2, 1991. Available on the Internet: http://gnu.org/li
enses/gpl-2.0.html (2009-01-31).

[FSF08] The Free Software Foundation. The Free Software Definition, last

updated in December 2008. Available on the Internet: http://gnu.org/philosophy/free-sw.html (2009-01-31).

[Gan95] Mike Gancarz. The UNIX Philosophy. Digital Press, 1995. ISBN:

1-55558-123-4.

[Gra02] Paul Graham. A Plan for Spam. On the Internet: http://paulgraham.
om/spam.html (2009-01-10), August 2002.

[GvW03] Mark G. Graff and Kenneth R. van Wyk. Secure Coding: Principles

and Practices. O’Reilly Media, 2003. ISBN: 0-596-00242-4.

[Haf05] Munawar Hafiz. Security architecture of mail transfer agents.

Master’s thesis, University of Illinois, June 2005. Also avail-
able online at: http://netfiles.uiu
.edu/mhafiz/www/resear
h/mastersthesis/thesis.pdf (2009-02-03).

[Har03] Evan Harris. The Next Step in the Spam Control War: Greylisting.

On the Internet: http://proje
ts.puremagi
.
om/greylisting/whitepaper.html (2009-01-10), 2003.

[Haz01] Philip Hazel. Exim: The Mail Transfer Agent. O’Reilly, 2001. ISBN:

0-596-00098-7.

[Iro06] Spammers Continue Innovation: IronPort Study Shows Image-based
Spam, Hit & Run, and Increased Volumes Latest Threat to Your Inbox.

Press release, IronPort Systems Inc., June 2006. Also available

b

online at: http://ironport.
om/
ompany/ironport_pr_2006-06-28.html (2008-11-26).

[Joh79] Stephen C. Johnson. YACC: Yet Another Compiler-Compiler. In
UNIX Programmer’s Manual, volume 2. 1979. Available on the

Internet: http://dinosaur.
ompilertools.net/ya

/ya

.ps (2009-

02-07).

[Jus99] Ian R. Justman. Subject: setuid vs. setgid. This is a post to

the Bugtraq mailing list bugtraq@securityfocus.com, January 1999.
Available on the Internet: http://se
lists.org/bugtraq/1999/Jan/0099.html (2009-01-26).

[Kan03] Stephen H. Kan. Matrics and Models in Software Quality Engineer-
ing. Addison-Wesley, second edition, 2003. ISBN: 0-201-72915-6.

[KP84] Brian W. Kernighan and Rob Pike. The UNIX Programming Envi-

ronment. Prentice-Hall, 1984. ISBN: 0-13-937681-X.

[KP99] Brian W. Kernighan and Rob Pike. The Practice of Programming.

Addison-Wesley, 1999. ISBN: 0-201-61586-X.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming
Language. Prentice-Hall, second edition, 1988. ISBN: 0-13-110362-

8.

[Law02] United States Public Laws. Sarbanes-Oxley Act. PL 107-
204, 116 Stat 745, 2002 Enacted HR.3763, 2002. On the

Internet: http://frwebgate.a

ess.gpo.gov/
gi-bin/getdo
.
gi?dbname=107_
ong_bills&do
id=f:h3763enr.tst.pdf (2009-01-26).

[Lei04] Wolfgang Leister. Hikernet: Peer-to-Peer Messaging in an Ad-Hoc

Network. Technical Report DART/10/04, Norsk Regnesentral,
December 2004. Available on the Internet: http://publi
ations.nr.no/hikernet.pdf (2009-02-08).

[Lev08] John R. Levine. DNS Blacklists and Whitelists draft-irtf-asrg-
dnsbl-08. Technical report, Anti-Spam Research Group, Novem-

ber 2008. On the Internet: http://tools.ietf.org/html/draft-irtf-asrg-dnsbl-08 (2009-01-10).

[LH04] Alex Lowy and Phil Hood. The Power of the 2 x 2 Matrix: Using

2 x 2 Thinking to Solve Business Problems and Make Better Decisions.

Jossey-Bass, 2004. ISBN: 0-78797-292-4.

[LS95] Nils Lenke and Peter Schmitz. Geschwätz im ‘Globalen Dorf’ – Kom-

munikation im Internet. In Osnabrücker Beiträge zur Sprachtheorie:
Neue Medien, volume 50, pages 117–141. Ulrich Schmitz, 1995. (In

German language).

[M+78] Doug McIlroy et al. Unix Time-Sharing System Forward. The Bell
System Technical Journal, volume 57, number 6, part 2, page 1902,

1978.

c

[MCB+03] Rick Moen, Ted Cabeen, Bastian Blank, Sean Burlington, Simon

Cooper, and J. C. Lawrence. Subject: email server question... This is

a discussion on the mailing list plug@lists.q-linux.com, 2002–2003.
Available on the Internet: http://linuxmafia.
om/faq/Mail/mtas.html (2008-12-09).

[Ost08] Michael Osterman. How do you define ‘unified communications’? On
the Internet: http://www.networkworld.
om/newsletters/gwm/2008/0225msg1.html (2008-11-26), February 2008.

[Pan08] Q2 2008 Email Threats Trend Report. Technical report, Panda

Security and Commtouch, July 2008. Also available on-
line at: http://www.pandase
urity.
om/emailhtml/oxygen/Q2_08%20Email_Threats%20-%20Panda.pdf (2008-11-26).

[Ray03] Eric S. Raymond. The Art of UNIX Programming. Addison-Wesley
Professional, 2003. ISBN: 0-13-142901-9. Also available online athttp://
atb.org/esr/writings/taoup/html/ (2008-12-30).

[SB07] Ken Simpson and Stas Bekman. Fingerprinting the World’s Mail

Servers. O’ReillyNet, May 2007. On the Internet: http://oreillynet.
om/lpt/a/6849 (2008-12-11).

[She06] Dan Shearer. MTA Comparison. Linux Weekly News, August 2006.

Available online at: http://shearer.org/MTA_Comparison (2008-12-

09) or http://lwn.net/Arti
les/196711 (2008-12-09).

[Sil02] Dave Sill. The qmail Handbook. Apress, 2002. ISBN: 1-893115-40-2.

[Sil07] Dave Sill. Life with qmail. On the Internet: http://lifewithqmail.org (2008-10-18), 2007. Version 2007-11-30.

[Spi03] Diomidis Spinellis. Code Reading: The Open Source Perspective.

Addison-Wesley Professional, 2003. ISBN: 0-201-79940-5.

[Spi06] Diomidis Spinellis. Code Quality: The Open Source Perspective.

Addison-Wesley Professional, 2006. ISBN: 0-321-16607-8.

[SS75] Jerome H. Saltzer and Michael D. Schroeder. The Protection of In-
formation in Computer Systems. Proceedings of the IEEE, 63(9):1278–

1308, 1975. Available on the Internet: http://web.mit.edu/Saltzer/www/publi
ations/prote
tion/ (2009-02-07).

[TvS02] Andrew S. Tanenbaum and Maarten van Steen. Distributed Sys-

tems: Principles and Paradigms. Prentice-Hall, international edi-

tion, 2002. ISBN: 0-13-121786-0.

[VA01] Paul A. Vixie and Frederick M. Avolio. Sendmail: Theory and Prac-
tice. Digital Press, second edition, 2001. ISBN: 1-55558-229-X.

The first chapter “Background and History” is available online athttp://smtap.al.org/
h01.pdf (2008-10-23).

d

[Ven92] Wietse Venema. TCP WRAPPER: Network monitoring, access, con-

trol, and booby traps. Technical report, Eindhoven University

of Technology, July 1992. On the Internet: http://www.vt
if.telstra.
om.au/pub/do
s/se
urity/t
p_wrapper.txt (2009-01-10).

[Ven06] Wietse Venema. The Postfix mail server as a secure program-

ming example. On the Internet: http://www.eure
om.fr/tea
hing/engineering/page40379/file40059.pdf (2008-12-11), 2006.

[Whe03] David A. Wheeler. Countering Spam with Ham-Authenticated

Email and the Guarded Email Protocol. On the Internet: http://www.dwheeler.
om/guarded-email/guarded-email.html (2009-01-04),
2003.

e

Websites

[1] Internet Assigned Numbers Authority. Port Numbers. http://iana.org/assignments/port-numbers (2009-01-10).

[2] Adam Back. Hashcash.org. http://hash
ash.org (2009-01-04).

[3] Daniel J. Bernstein. Homepage of qmail. http://
r.yp.to/qmail.html (2008-

10-18).

[4] Daniel J. Bernstein. Internet Mail 2000. http://
r.yp.to/im2000.html
(2000-02-07).

[5] Internet Mail Consortium. Internet Mail Standards. http://im
.org/mail-standards.html (2009-01-27).

[6] The Sendmail Consortium. Homepage of sendmail. http://www.sendmail.org (2008-10-18).

[7] The Free Dictionary. Definition for “Message Transfer Agent”. http://en
y
lopedia2.thefreedi
tionary.
om/Message+Transfer+Agent (2008-10-

15).

[8] Anselm R. Garbe and the suckless.org community. suckless.org. http://www.su
kless.org (2009-01-17).

[9] The Internet Engeneering Task Force. Homepage of the IETF. http://ietf.org (2000-02-07).

[10] Oliver Kurth. Homepage of masqmail. The original website http://masqmail.
x is not available anymore but a mirror exists: http://soni
.net/~okurth/masqmail (2008-10-19).

[11] Kyler Laird. Bugreport: spool files not completely removed upon delivery.http://bugs.debian.org/245882 (2009-01-15), April 2004.

[12] MailRadar. Mail server statistics. http://www.mailradar.
om/mailstat/
(2008-12-11).

[13] Nigel Metheringham. Homepage of exim. http://www.exim.org (2008-10-

19).

[14] Russell Nelson. Homepage of netqmail. http://www.qmail.org/netqmail
(2009-01-05).

f

[15] Russell Nelson. Homepage of qmail. http://www.qmail.org (2008-10-18).

[16] Ralf Neubauer. Bugreport: big mails over slow links get sent multiple times.http://bugs.debian.org/216226 (2009-01-15), October 2003.

[17] Pennsylvania Department of Education. Science Glossary. http://www.pde.state.pa.us/a_and_t/lib/a_and_t/S
ien
e_Glossary.pdf (2008-11-26).

[18] Encyclopedia of PC Magazine. Unified Communications. http:/p
mag.
om/en
y
lopedia_term/0,2542,t=unified+
ommuni
ations&i=53422,00.asp (2009-02-03).

[19] The Debian Project. Debian – Packages. http://pa
kages.debian.org (2009-

01-15).

[20] The Debian Project. Details of package masqmail in lenny. http://pa
kages.debian.org/lenny/masqmail (2008-10-24).

[21] The Debian Project. Popularity contest statistics for masqmail. http://pop
on.debian.org (2009-01-15).

[22] The Linux Counter Project. The Linux Counter. http://
ounter.li.org
(2009-01-15).

[23] The Ubuntu Project. Ubuntu Popularity Contest. http://pop
on.ubuntu.
om (2009-01-15).

[24] Markus Schnalke. Homepage of masqmail. http://prog.marmaro.de/masqmail (2008-10-19).

[25] Mark Stosberg. Adventures with Slackware Linux on a Low Memory Laptop.http://www.stosberg.
om/Te
h/sla
kware_on_lowlap.html (2009-01-15).

[26] Adobe Systems. Homepage of Adobe Flash. http://adobe.
om/produ
ts/flash (2000-02-02).

[27] Reinhard Tartler, Derek Broughton, et al. Wanted: simple mailer for laptop

use. http://ubuntuforums.org/showthread.php?t=82744 (2009-01-15), Octo-
ber 2005.

[28] unknown. open source mail server comparison. http://www.geo
ities.
om/mailsoftware42 (2008-12-09).

[29] unknown. Push Email – An Introduction. http://pushemail.
o.uk (2000-

02-07).

[30] Wietse Venema. Homepage of postfix. http://www.postfix.org (2008-10-19).

[31] Frederick Vermeulen. Qmail-TLS patch archive. http://inoa.net/qmail-tls/ (2009-01-24).

[32] David A. Wheeler. SLOCCount. http://www.dwheeler.
om/slo

ount
(2009-01-20).

g

[33] Wikipedia. Blu-ray Disc. http://en.wikipedia.org/w/index.php?title=Blu-ray_Dis
&oldid=268015627 (2009-02-02).

[34] Wikipedia. Comparison of mail servers. http://en.wikipedia.org/w/index.php?title=Comparison_of_mail_servers&oldid=255827293 (2008-12-09).

[35] Wikipedia. HD DVD. http://en.wikipedia.org/w/index.php?title=HD_DVD&oldid=267253912 (2009-02-02).

[36] Wikipedia. qmail. http://en.wikipedia.org/w/index.php?title=Qmail&oldid=241013610 (2008-10-18).

[37] Wikipedia. Sendmail. http://en.wikipedia.org/w/index.php?title=Sendmail&oldid=264962189 (2009-01-22).

[38] Wikipedia. Simple Mail Transfer Protocol. http://en.wikipedia.org/w/index.php?title=Simple_Mail_Transfer_Proto
ol&oldid=262937416 (2009-

01-12).

[39] Wikipedia. Transport Layer Security. http://en.wikipedia.org/w/index.php?title=Transport_Layer_Se
urity&oldid=258890258 (2008-12-22).

[40] Wikipedia. Unified communications. http://en.wikipedia.org/w/index.php?title=Unified_
ommuni
ations&oldid=253436289 (2008-11-26).

[41] Wikipedia. Unified messaging. http://en.wikipedia.org/w/index.php?title=Unified_messaging&oldid=251586924 (2008-11-26).

[42] WordNet, Princeton University. Electronic communication. http://wordnet.prin
eton.edu/ (2008-11-26).

h

Requests for Comments

Requests for Comments are the documents that propose or define Internet stan-

dards and best practices. They are controlled by the Internet Engineering Task

Force (short: IETF) [9].

A particular RFC is located at http://tools.ietf.org/rf
/rf
NNNN.txt , where
“NNNN” is the four-digit number of that RFC. For example is RFC 821 located athttp://tools.ietf.org/rf
/rf
0821.txt .

More comfortable to browse are the HTML formatted representations which

contain navigation hyperlinks. They are accessible at http://tools.ietf.org/html/rf
NNNN .

Following is a list of RFCs which are relevant for this thesis. An extensive list

of mail-related RFCs is available at [5].

RFC 821 Simple Mail Transfer Protocol (obsoleted by RFC 2821)

RFC 822 Standard for the format of ARPA Internet text messages (obsoleted by

RFC 2822)

RFC 2487 SMTP Service Extension for Secure SMTP over TLS (obsoleted by RFC 3207)

RFC 2505 Anti-Spam Recommendations for SMTP MTAs

RFC 2554 SMTP Service Extension for Authentication (obsoleted by RFC 4954)

RFC 2821 Simple Mail Transfer Protocol (obsoleted by RFC 5321)

RFC 2822 Internet Message Format (obsoleted by RFC 5322)

RFC 3207 SMTP Service Extension for Secure SMTP over Transport Layer Security

RFC 4954 SMTP Service Extension for Authentication

RFC 5321 Simple Mail Transfer Protocol

RFC 5322 Internet Message Format

i

Index

access restriction, 39, 62

alias expansion, 8, 39, 47, 69

.forward, 47

Allman, Eric, 23, 30

archiving, 42, 48, 70

ASCII, 3, 18, 75

Atting, Henry, viii

authentication, 39, 47, 51, 62, 70

SMTP-AUTH, i, 8, 39, 47, 63

SMTP-after-POP, 8, 39, 47

backend, 64

methods, 63

availability, 44, 49

Back, Adam, 22

base64, 7

bayesian filter, 41

Bekman, Stas, 29

Berkeley Software Distribution (BSD),

30, 49

Bernstein, Daniel J., 22, 29–31, 72,

75

body, see mail message

Break Even, 58

Breitner, Joachim, viii
Broughton, Derek, 9

C programming language, vi, 7

call graph, 45

Candea, George, 51

certificates, 39, 62

compartmentalization, 42, 46, 66

conditional compilation, 7, 48, 49, 52

configuration, 9, 21, 22, 25, 34, 45, 50,
62, 64

content scanner, 42

Costales, Bryan, 26

courier-mta, 29

crash-only software, 51

cron, 76

cyrus SASL, 63

database system, 68

de Boyne Pollard, Jonathan, 30, 33

Debian

masqmail package, vi, 4

package pool, 4

popcon, 11

delivermail, 30

denial of service attack, 22, 44, 48

Dent, Kyle D., 26, 32, 46, 63

development

dead end, 56

goal, 36, 59

motivation, 59, 60

risks, 55

strategy, 52, 59

work effort, 54

dial-up, 4, 11, 20

DNS blacklist, 41, 71

duplicates of messages, 43

dynamic DNS, 21

Eisentraut, Peter, 70, 71

electronic communication, 12

classification, 13

trends, 15

email, 17

standardization, 19

trends, 20, 33

encryption, 40, 47, 51, 61, 70

envelope, see mail message

executable bit, 74

exim, 9, 28–31, 33, 34, 45, 46, 49, 68

existing code, 55, 58, 62

extendability, 43, 49, 52, 56

fax, see telefax

j

Finch, Tony, 66, 68

firewall, 7

flexibility, 23

Forster, Julian, viii

forwarder, see relay-only MTA

Fox, Armando, 51

Free Software, 4, 11, 28, 30, 59, 65

Free Software projects, 28, 49, 55, 58

Freund, Jesse, 17

functional requirements, 37

gateway, 8, 10, 73

Geis, Marc, viii

General Public License (GPL), 4, 31, 62

glib, 7

gnutls, 62

good design, 54

good enough, 58

Graff, Marc G., 36, 54

greylisting, 41, 71

groupware, 27

gsasl, 63

Guarded Email, 22

Hafiz, Munawar, 26, 32, 37, 42, 44,
46, 54

Hashcash, 22, 41

Hazel, Philip, 31

header, see mail message

Heraclitus, 57

HikerNet, 10

home server, 21

IETF, i, 1

ifdef, see conditional compilation

IMAP, 6, 20, 27, 67

incoming channels, 37, 47, 66, 70, 72

inetd, 65, 72, 76

ucspi-tcp, 72

Inter-Process Communication (IPC), 74

Internet Mail 2000, 22

Internet Service Provider (ISP), 6, 9,
10, 20

interposition filter, 52, 54, 64

Johnson, Stephen C., 68

junk mail, see spam

Justman, Ian R., 75

Kan, Stephen H., 42, 44

Kernighan, Brian W., vi, vii, 44

Kese, Volkmar, viii
Kurth, Oliver, viii, 4, 6, 7, 48, 55

Langbein, Christian, viii
least privilege, principle of, 72, 76

Leister, Wolfgang, 10

Lenke, Nils, 13

libident, 7

life cycle analysis, 14

Line Feed, 75

lines of code, 7, 32, 54

Linux Counter, 11

local delivery, 8, 38, 67

m4 macros, 23, 34

mail agents, 1

Mail Delivery Agent (MDA), 2, 8, 38,

42, 67, 73

mail loss, 38, 43, 67

mail message, i, 3

mail provider, 20

mail queue, 38, 47, 67, 73

mail sanitizing, 38, 47, 68

mail security layer, 30, 64

Mail Transfer Agent (MTA), 1, 15

architecture, 32, 45

comparison, 32

definition, 26

market share, 29

real ones, 27

Mail User Agent (MUA), 2, 3, 20, 21, 50

maildir, 7, 8

maintainability, 44, 49

malware, 42

handling, 48, 65, 70

masqmail, vi, 4, 5, 9, 49

architecture, 45

bugs, 48

common setups, 5

dependencies, 7

in five years, 36

limitations, 6

new design, 56, 65

on notebooks, 6, 9, 10

position, 28

problems, 11

k

security, 43, 48

users, 9, 11

master process, 76

mbox, 8

McIlroy, Doug, 56, 58

md5, 7

milter, 33, 45

MIME, 3, 14

MMDF, 29, 31, 33

modularity, 41, 46, 51, 54, 57

mserver, 7, 9, 11

non-functional requirement, 42

non-permanent online connection, 5,
9, 38, 43

online routes, 9, 38, 39, 47, 69

online state, 9

open relay, 6, 39, 62

openssl, 8, 40, 47, 62

Osterman, Michael, 16

out-of-the-box usage, 23, 50

outgoing channels, 37, 47, 67, 70, 73

PAM, 63

parser generator, 69

performance, 23, 34, 44, 49

permission, 75

Pike, Rob, vi, vii, 44

pipe, 8, 37, 56, 67, 73, 74

plain text, 40, 64, 68, 75

policy, 65

POP3, 6, 8, 11, 20, 27, 67

portability, 44, 49

Postel, Jon, 69

postfix, 28–31, 33, 34, 42, 46, 48, 63, 67,
68, 72, 74–76

no second postfix, 36

procmail, 2

proxy, 65

push email, 21

qmail, 9, 10, 28–34, 42, 46, 57, 59, 62,
67, 68, 70, 72, 75, 76

netqmail, 31

quality improvement, 54, 56–58

Raymond, Eric S., 41, 43, 69

redesign, 57

relay-only MTA, 6, 27, 38

reliability, 38, 43, 48, 51

repair, 56

rule of, 43, 69

Request for Comments (RFC), i, viii, 1–

3, 41, 61, 63, 69, 70

Ritchie, Dennis, vi
robustness, 43, 49

principle of, 69

rule of, 43

root privilege, 33, 38, 65, 67, 75, 76

Roth, Jochen, viii

Sarbanes-Oxley Act, 42

SASL, 63

Schaaf, Hans-Jörg, viii

Schäffter, Markus, viii
Schietzel, Roger, viii

Schmitz, Peter, 13

Schnalke, Markus, ii
Schnalke, Rüdiger, viii

secure tunnel, 40, 47

security, 23, 33, 34, 37, 42, 46, 48, 51,

54, 64

retrofitted, 54

sendmail, 5, 10, 23, 28–31, 33, 34, 45,

46, 56, 63, 68

command, 7, 37, 65, 66

compatibility, 8, 28

MeTA1, 30, 33, 34, 46, 56

sendmail X, 30, 37, 46, 56, 66, 67

setuid/setgid, 33, 65–67, 75, 76

Shearer, Dan, 32

Sill, Dave, 31, 57

Simple Mail Transfer Protocol (SMTP),
i, 2, 37, 61, 66

bouncing, 3

concepts of, 2

dialog, 41, 42, 70

rejecting, 3, 69

responsibility, 2, 22, 38, 43, 70

store-and-forward, 2, 18, 22

Simpson, Ken, 29

smail, 29, 31, 33

smap, 64

smart host, 27

smart phone, 16

l

SMTPS, i, 40

spam, i, 9, 18, 33, 39, 41

handling, 48, 52, 65, 70

sources, 18

spamassassin, 71

Spinellis, Diomidis, 42, 44, 68

SSL, see TLS

STARTTLS, i, 40, 47, 51, 61, 62

Steffan, Lydi, viii

Stenard, James, viii
stunnel, 40, 47

suckless software, 57

SWOT analysis, 18, 19, 25

system user management, 75

Tanenbaum, Andrew S., 43

TCP socket, 7, 8

TCP Wrapper, 39, 47, 62

telefax, 8, 12, 14, 17, 73

test program, 7, 49

testability, 44, 49

the market, 18

Transport Layer Security (TLS), 40, 62

Unified Communication, 16

Unified Messaging, 15, 17, 18

Unix, vi, 11, 28, 30, 32, 44, 49, 56, 57,

68, 75

philosophy, 33

untrusted environment, 6, 37, 40

usability, 44, 50

UUCP, 8, 37, 67

van Wyk, Kenneth R., 36, 54

Venema, Wietse, 31, 33, 36, 47, 75

Vermeulen, Frederik, 62

Wheeler, David A., 18, 22, 32, 54

wrapper, 8, 23, 34, 52, 54, 56, 64

zmailer, 29

m

